首页> 外文OA文献 >Ultra-fine grinding and mechanical activation of mine waste rock using a planetary mill for mineral carbonation
【2h】

Ultra-fine grinding and mechanical activation of mine waste rock using a planetary mill for mineral carbonation

机译:使用行星式粉碎机进行矿物质碳化的超细粉碎和机械活化矿山waste石

摘要

© 2016 Elsevier B.V. In order to mitigate the effects of climate change, a worldwide effort is being launched to use ultramafic mine waste as feedstock for CO 2 sequestration by mineral carbonation. To enhance the rate of mineral carbonation at any specific mine site, it is important to develop individualized methods for use at that specific mine site, and with respect to its particular waste mineralogy. This study examines mechanical activation as the pre-treatment method for ultramafic mine waste containing forsterite and serpentine. Particle size distribution, specific surface area, microstructure and direct aqueous mineral carbonation were measured to test the effects of mechanical activation. The Rietveld method was used to analyze the microstructure of untreated and mechanically-activated material. It was found that, as a result of the grinding energy input on olivine, particle size was decreased, surface area was increased, crystallite size was reduced and micro-strain was accumulated. During the dry mechanical activation of mine waste, serpentine content was partially dehydrated and converted to olivine. The concurrent grinding of serpentine with olivine promoted the formation of new surface area, but it hindered the disordering of the crystal structure of forsterite. Forsterite makes up the majority of the content and contributes to CO 2 sequestration under selected carbonation conditions. The CO 2 sequestration conversion of mechanically-activated olivine and mine waste are 22.5% and 31.5%, respectively, with 3600 kWh/t specific milling energy input after one hour direct aqueous carbonation. For the purposes of mineral carbonation, the mechanical activation of mine waste is preferable to simply grinding pure olivine.
机译:©2016 Elsevier B.V.为了减轻气候变化的影响,正在全球范围内努力使用超镁铁矿废料作为通过矿物碳酸化作用隔离CO 2的原料。为了提高任何特定矿场的矿物碳酸化率,开发针对该特定矿场以及针对其特定废物矿物学的个性化方法非常重要。这项研究探讨了机械活化作为含镁橄榄石和蛇纹石的超镁铁矿废料的预处理方法。测量粒度分布,比表面积,微观结构和直接含水矿物碳酸化以测试机械活化的作用。 Rietveld方法用于分析未经处理和机械活化的材料的微观结构。发现,由于在橄榄石上输入了研磨能量,因此减小了粒径,增大了表面积,减小了微晶尺寸,并且累积了微应变。在矿山废料的干式机械活化过程中,蛇纹石含量被部分脱水并转化为橄榄石。蛇纹石与橄榄石的同时研磨促进了新表面积的形成,但阻碍了镁橄榄石晶体结构的紊乱。镁橄榄石占大多数,并在选定的碳酸化条件下促进了CO 2的固存。机械活化的橄榄石废料和矿山废料的CO 2固存转化率分别为22.5%和31.5%,在直接碳酸水溶液一小时后输入3600 kWh / t的比磨能量。出于矿物碳酸化的目的,矿山废料的机械活化优于简单研磨纯橄榄石。

著录项

  • 作者

    Li J; Hitch M;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号