首页> 外文OA文献 >Nouveaux concepts de locomotion pour véhicules tout-terrain robotisés
【2h】

Nouveaux concepts de locomotion pour véhicules tout-terrain robotisés

机译:机器人全地形车的新运动概念

摘要

Robotic ground vehicles are mechanisms that use gravity and contact forces with the ground to perform motion. They can either be wheeled, tracked or legged. In this thesis we will focus on n-wheeled vehicles able to perform ground following motion with all the wheels maintaining contact at the same time. The main goal of this work is to establish the implication of the topological architecture of the vehicle mechanism on criteria such as climbing skills, robustness, ground clearance, weight, power consumption, and price. Efficient tools will be provided to help the robot designer to understand the implications of important design parameters like the number of wheels, the vehicle mechanism, and the motorisation of joints on the above criteria. The general state of a robotic ground vehicle can be described using spatial vectors containing both the linear and angular components of physical quantities such as position, velocity, acceleration and linear force. By definition, there is motion when the vehicle's link velocity state vector (expressed from the ground reference) is greater than zero. Wheeled ground following motion is then a special case of vehicle constrained motion where all wheels maintain contact with the ground. This thesis will describe a general kinematic and dynamic analysis of n-wheeled ground following robots. We will then discuss "contact forces optimisation techniques" and show the relationship between the number of wheels of a vehicle mechanism, the topological structure and the optimised degrees of fredom that we can get for the contact forces distribution. We will conclude with some considerations concerning the sensors needs for on-board terrain estimation. We will emphasise our argument using our two robot designs as examples: Shrimp: A 6-wheeled ground vehicle based on a 3 DOF passive suspension mechanism. With this design, no sensor based control is necessary to maintain ground contact with all the wheels. The distribution of tangential contact forces is done passively but can be optimised with on board active control and sensors for contact properties estimation (gyro, joint position sensors). Octopus: A 8-wheeled ground vehicle based on a (6 DOF active + 1 DOF passive) suspension mechanism. The autonomous coordination of the active 14 DOF is based on the on-board integration of inclinometer, joint position sensors and tactile wheels able to sense ground contact properties (angle, curvature, force, ...). With this design, active control can distribute the contact forces to minimise tangential forces and increase traction. This decreases the need for friction to climb obstacles. The theoretical investigation and new sensing concepts enable the design these two robots that demonstrate excellent capabilities for rough terrain. Passive Wheeled Locomotion Mechanisms (WLM) solutions are now mature enough for real applications like space exploration. However, active WLM solutions demonstrate potential climbing skills that cannot be equalled passively. Enhanced integration of sensors, actuators and advanced embedded control algorithms will lead to greater applications for future field and service robotics applications.
机译:机器人地面车辆是利用重力和地面接触力来执行运动的机构。它们可以是轮式,履带式或有腿的。在本文中,我们将重点研究能够在所有车轮同时保持接触的情况下跟随地面运动的n轮车辆。这项工作的主要目的是确定车辆机械拓扑结构对攀爬技能,坚固性,离地间隙,重量,功耗和价格等标准的影响。将提供有效的工具来帮助机器人设计者理解重要设计参数的含义,例如车轮数量,车辆机构和关节电动化等。可以使用同时包含物理量的线性和角度分量(例如位置,速度,加速度和线性力)的空间矢量来描述机器人地面车辆的一般状态。根据定义,当车辆的链接速度状态矢量(从地面参考值表示)大于零时,即存在运动。因此,带轮地面跟随运动是车辆约束运动的一种特例,其中所有车轮都保持与地面接触。本文将描述n轮跟随机器人的一般运动学和动力学分析。然后,我们将讨论“接触力优化技术”,并显示车辆机械装置的车轮数量,拓扑结构和为接触力分布而获得的优化的fredom程度之间的关系。我们将得出一些有关车载地形估计所需传感器的考虑因素。我们将以两种机器人设计为例来强调我们的论点:虾:基于3自由度被动悬架机构的6轮地面车辆。采用这种设计,无需基于传感器的控制即可保持与所有车轮的接地。切向接触力的分配是被动完成的,但可以通过板载主动控制和用于接触特性估计的传感器(陀螺仪,关节位置传感器)进行优化。章鱼:一种基于(6自由度+ 1自由度)悬架机构的8轮地面车辆。主动式14自由度的自主协调基于倾斜仪,关节位置传感器和可感知地面接触特性(角度,曲率,力等)的触觉轮的车载集成。通过这种设计,主动控制可以分配接触力以最小化切向力并增加牵引力。这减少了攀爬障碍物所需的摩擦。理论研究和新的传感概念使这两个机器人的设计得以展示,这些机器人在崎rough的地形上具有出色的能力。被动轮式运动机制(WLM)解决方案现在已经足够成熟,可以用于太空探索等实际应用。但是,主动的WLM解决方案证明了潜在的攀岩技能无法与之媲美。传感器,执行器和高级嵌入式控制算法的增强集成将为未来的现场和服务机器人技术带来更多的应用。

著录项

  • 作者

    Lauria Michel;

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种 fre
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号