首页> 外文OA文献 >Stochastic transitions into silence cause noise correlations in cortical circuits
【2h】

Stochastic transitions into silence cause noise correlations in cortical circuits

机译:随机转变为静音会在皮质回路中引起噪声相关

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The spiking activity of cortical neurons is highly variable. This variability is generally correlated among nearby neurons, an effect commonly interpreted to reflect the coactivation of neurons due to anatomically shared inputs. Recent findings, however, indicate that correlations can be dynamically modulated, suggesting that the underlying mechanisms are not well understood. Here, we investigate the hypothesis that correlations are dominated by neuronal coinactivation: the occurrence of brief silent periods during which all neurons in the local network stop firing. We recorded spiking activity from large populations of neurons in the auditory cortex of anesthetized rats across different brain states. During spontaneous activity, the reduction of correlation accompanying brain state desynchronization was largely explained by a decrease in the density of the silent periods. The presentation of a stimulus caused an initial drop of correlations followed by a rebound, a time course that was mimicked by the instantaneous silence density. We built a rate network model with fluctuation-driven transitions between a silent and an active attractor and assumed that neurons fired Poisson spike trains with a rate following the model dynamics. Variations of the network external input altered the transition rate into the silent attractor and reproduced the relation between correlation and silence density found in the data, both in spontaneous and evoked conditions. This suggests that the observed changes in correlation, occurring gradually with brain state variations or abruptly with sensory stimulation, are due to changes in the likeliness of the microcircuit to transiently cease firing.
机译:皮质神经元的突波活性是高度可变的。这种可变性通常与附近的神经元之间相关,这种效应通常被解释为反映由于解剖学上共享的输入而引起的神经元的共激活。然而,最近的发现表明,可以动态地调节相关性,这表明对潜在的机制还没有很好的理解。在这里,我们调查的假设是相关性受神经元共激活所支配:短暂的沉默期的发生,在此期间本地网络中的所有神经元均停止激发。我们记录了来自不同大脑状态的麻醉大鼠听觉皮层中大量神经元的突触活动。在自发活动过程中,伴随着大脑状态失步的相关性降低主要是由沉默期密度的降低引起的。刺激的出现导致相关性的最初下降,随后是反弹,其时程被瞬时沉默密度所模仿。我们建立了一个速率网络模型,该模型在静默和活动吸引子之间具有由波动驱动的过渡,并假设神经元以遵循模型动力学的速率发射泊松峰值序列的神经元。网络的外部输入的变化改变了进入无声吸引子的转换速率,并再现了在自发和诱发条件下数据中发现的相关性和无声密度之间的关系。这表明观察到的相关性变化是随着大脑状态的变化逐渐发生,或者随着感觉刺激而突然发生的,这是由于微电路的瞬态停止发射的可能性发生变化而引起的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号