首页> 外文OA文献 >Neuronal plasticity as an evolutionary strategy: Implications for neuroprotection in response to hypoxic challenge.
【2h】

Neuronal plasticity as an evolutionary strategy: Implications for neuroprotection in response to hypoxic challenge.

机译:神经元可塑性作为一种进化策略:应对低氧挑战的神经保护作用。

摘要

Phenotypic plasticity has an important place in evolution because in order to survive in a dynamically changing environment, an organism needs to have a well-adapted set of defense responses, which include pre-emptive and retaliatory phenotypic shifts. From previous research it seems that while only a few vertebrates can survive prolonged periods of hypoxia or anoxia, the greatest physiological challenge occurs when severely diminished oxygen levels are encountered at tropical temperatures. Until recently, all of the neuroprotective strategies examined have been in hypoxia and anoxia tolerant species that evolved their tolerance at temperatures close to freezing. The discovery of a hypoxia and anoxia tolerant reef shark, the epaulette shark (Hemiscyllium ocellatum), has provided a model in which to examine neuroprotective mechanisms that evolved at tropical temperatures. The most susceptible tissues are the heart and brain because their continued metabolic activity rapidly depletes the energy budget. Successfully hypoxia and anoxia tolerant species of fish and turtles have evolved a set of strategies to forestall cell death. These physiological strategies centre on reversibly reprogramming metabolism by reducing energy consumption and increasing glycolysis. This review will focus on the activation of retaliatory and pre-emptive neuroprotective mechanisms that are elicited in the hypoxia and anoxia tolerant tropical epaulette shark to shut down cerebella activity and conserve brain energy charge during an anoxic challenge and will examine changes in the level of the inhibitory neurotransmitter gamma-aminobutyric acid, gamma-aminobutyric acid receptors, the role adenosine and molecular chaperones in forestalling neuronal death.
机译:表型可塑性在进化中具有重要地位,因为为了在动态变化的环境中生存,生物体必须具有一组适应性强的防御反应,包括先发制人和报复性表型转变。从以前的研究看来,虽然只有少数脊椎动物可以在缺氧或缺氧的长时间环境中生存,但是当在热带温度下遇到严重降低的氧气水平时,最大的生理挑战就会发生。直到最近,所检查的所有神经保护策略都针对耐缺氧和缺氧的物种,这些物种在接近冰点的温度下会逐渐发展其耐受性。耐缺氧和耐缺氧的礁鲨,肩章鲨(Hemiscyllium ocellatum)的发现,提供了一个模型,用于研究在热带温度下进化的神经保护机制。最易受影响的组织是心脏和大脑,因为它们持续的代谢活动会迅速耗尽能量预算。耐缺氧和耐缺氧的鱼类和海龟物种已经进化出一套防止细胞死亡的策略。这些生理策略集中在通过减少能量消耗和增加糖酵解来可逆地重新编程新陈代谢。这项审查将侧重于在低氧和耐缺氧的热带肩章鲨中引发的报复性和先发性神经保护机制的激活,以关闭小脑活动并在缺氧挑战中节省脑能量,并研究其水平的变化。抑制性神经递质γ-氨基丁酸,γ-氨基丁酸受体,腺苷和分子伴侣在阻止神经元死亡中的作用。

著录项

  • 作者

    Renshaw Gillian;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号