首页> 外文OA文献 >Elevated Atmospheric CO2 Impacts Carbon Dynamics in a C4-Sorghum-Soil Agroecosystem---An Application of Stable Carbon Isotopes (d13C) in Tracing the Fate of Carbon in the Atmosphere-Plant-Soil Ecosystem
【2h】

Elevated Atmospheric CO2 Impacts Carbon Dynamics in a C4-Sorghum-Soil Agroecosystem---An Application of Stable Carbon Isotopes (d13C) in Tracing the Fate of Carbon in the Atmosphere-Plant-Soil Ecosystem

机译:升高的大气CO2影响C4-高粱-土壤农业生态系统中的碳动力学-稳定碳同位素(d13C)在追踪大气-植物-土壤生态系统中碳的命运中的应用

摘要

Although a strong inter-dependence exists between atmospheric carbon dioxide (CO2) and the terrestrial carbon (C) cycle, the response of plant-soil ecosystems to the rapid increase in atmospheric CO2 is not well understood. My dissertation research focused on the impacts of elevated CO2 on the carbon dynamics of plant-soil ecosystems, which were a major part of the overall C4-sorghum Free-Air CO2 Enrichment (FACE) experiment conducted by the University of Arizona and USDA at the Maricopa Agriculture Center, Arizona, USA, in 1998 and 1999. In the experiment, sorghum (Sorghum bicolor (L) Mőench) crop was exposed to elevated CO2 ("FACE": ca. 560 mmol mol-1) and ambient CO2 ("Control": ca. 360 mmol mol-1) interacting with well-watered and water-stressed treatments. The results from my study showed that the seasonal mean soil respiration rate measured in elevated CO2 plots over two growing seasons was 3.3 mmol m-2 s-1, i.e., 12.7% higher than the 2.9 mmol m-2 s-1 in ambient CO2 plots. The increased respiration mainly resulted from the stimulated root respiration under elevated CO2, which increased 36.1% compared to that under ambient CO2. Measured changes in sorghum residue biochemistry caused by CO2 were detected, with decrease of amino acids and hemicellulose carbohydrates by 7% and 8%, respectively, and increase of cellulose carbohydrates and lignin by 49% and 5%, respectively. Phenolics were only significantly higher in FACE roots. The C:N ratio of sorghum tissues was not affected by elevated CO2, but was substantially lower under water stress. The laboratory incubation showed that an average of 7.3% significantly less respired CO2 was released from the FACE-tissue-amended soil than the Control-tissues-amended soil over the full 79-d incubation period. Non-lignin phenolics (r2 = 0.93, p = 0.002), and lignin (r2 = 0.89, p = 0.004) were found to be the most important factors related to the sorghum tissue decomposition. Highly stable residues of FACE sorghum input to the soil resulted in the increase of the recalcitrant C pool and the decrease of the labile C pool. As a result, mean residence time of SOC in FACE field plot increased compared to that in Control plot, suggesting that the SOC under elevated CO2 was more stable against decomposition.
机译:尽管大气中的二氧化碳(CO2)与陆地碳(C)循环之间存在很强的相互依存关系,但人们对植物-土壤生态系统对大气中CO2迅速增加的反应尚不十分了解。我的论文研究的重点是二氧化碳浓度升高对植物-土壤生态系统碳动力学的影响,这是亚利桑那大学和美国农业部在C4高粱自由空气二氧化碳富集实验中的重要组成部分。 1998年和1999年,美国亚利桑那州的马里科帕农业中心。在实验中,高粱(高粱双色(L)Mő ench)作物暴露于升高的CO2(“ FACE”:约560 mmol mol-1)和周围的二氧化碳(“对照”:约360 mmol mol-1)与浇水和水胁迫的处理相互作用。我的研究结果表明,在两个生长季节中,升高的CO2地块测得的季节性土壤平均呼吸速率为3.3 mmol m-2 s-1,即比环境CO2中的2.9 mmol m-2 s-1高12.7%。情节。呼吸增加主要是由于二氧化碳升高引起的根部呼吸刺激,与环境二氧化碳相比,呼吸增加了36.1%。检测到了由CO2引起的高粱残留物生化变化,氨基酸和半纤维素碳水化合物分别减少了7%和8%,纤维素碳水化合物和木质素分别增加了49%和5%。酚类元素在FACE根中仅显着较高。高粱组织的C:N比不受CO2浓度升高的影响,但在水分胁迫下显着降低。实验室温育显示,在整个79天的温育期内,FACE组织改良土壤释放的呼吸CO2平均比对照组织改良土壤释放的平均少7.3%。发现非木质素酚类物质(r2 = 0.93,p = 0.002)和木质素(r2 = 0.89,p = 0.004)是与高粱组织分解有关的最重要因素。 FACE高粱向土壤中输入的高度稳定的残留物导致顽固性C库的增加和不稳定C库的减少。结果,与对照区相比,FACE田间SOC的平均停留时间增加,这表明在CO2升高的情况下,SOC对分解更稳定。

著录项

  • 作者

    Cheng Li;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 EN
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号