首页> 外文OA文献 >Energy-transfer, electron-transfer, and atom/group-transfer resulting from low-energy ion-surface collisions characterize hydrocarbon, fluorocarbon, and mixed self-assembled monolayers
【2h】

Energy-transfer, electron-transfer, and atom/group-transfer resulting from low-energy ion-surface collisions characterize hydrocarbon, fluorocarbon, and mixed self-assembled monolayers

机译:低能离子表面碰撞产生的能量转移,电子转移和原子/基团转移表征了碳氢化合物,碳氟化合物和混合的自组装单分子层

摘要

Organic thin films (alkanethiolates chemisorbed on gold) were employed in low-energy (eV) ion-surface collisions to validate the technique as a surface analysis tool and to further investigate processes associated with ion-surface interactions. Low-energy ion surface collisions of small polyatomic and atomic ions with self-assembled monolayers (SAMs) ascertain the chemical composition, structure, and quality of SAMs utilizing four processes: energy transfer (fragmentation of projectile ions: surface-induced dissociation (SID)), electron transfer (neutralization of the projectile ions), atom/group transfer (reaction between the projectile ion and atom/groups from SAMs), and chemical sputtering. Low-energy ion-surface collisions were used to investigate newly synthesized fluorinated compounds where the degree of fluorination of the thiolate tail group increases. Data indicate that substitution of CH₃ with CF₃ as the terminal group has a substantial influence on energy transfer, electron transfer, and atom/group transfer. Slight penetration into a depth of SAM films is illustrated by the formation of certain ion-surface reaction products (a result not observed for previously characterized Langmuir-Blodgett (L-B) films). A novel neutralization mechanism for reaction between methyl cation and hydrocarbon and fluorocarbon SAMs was established. Ion neutralization (besides direct electron transfer) results from a hydride ion transfer, methyl anion transfer, or fluoride transfer between hydrocarbon and fluorocarbon SAMs and incoming methyl cations. Experimental ion-surface and ion-molecule data support the ion neutralization mechanism originally proposed by ab initio and thermochemical calculations. Ion-surface processes were also used to characterize three mixed SAM systems (system 1: hydroxyl/hydrocarbon mixed SAMs and systems 2 and 3: fluorocarbon/hydrocarbon mixed SAMs). The mixed SAMs were prepared from binary thiol solutions and uniform solutions of asymmetrical disulfides. These ion-surface data can be useful for qualitative (identification of the sample's chemical composition) and quantitative analysis (calculation of the surface concentration of a chemical species for a mixed SAM). An in-line Sector-Time-of-Flight (TOF) tandem mass spectrometer with low-energy ion-surface collisions was characterized. Research involved testing the versatility of the instrument in terms of effective ion activation (peptide fragmentation) and surface analysis of organic thin films. This prototype will aid further implementation of SID into commercial TOF instruments for efficient ion activation and surface analysis capabilities.
机译:有机薄膜(化学吸附在金上的链烷硫醇盐)被用于低能(eV)离子-表面碰撞中,以验证该技术是否可作为表面分析工具并进一步研究与离子-表面相互作用相关的过程。小型多原子和原子离子与自组装单分子层(SAMs)的低能离子表面碰撞可通过以下四个过程确定SAMs的化学组成,结构和质量:能量转移(弹丸离子的碎片:表面诱导解离(SID)) ),电子转移(射出离子的中和),原子/基团转移(射弹离子与SAM中的原子/基团之间的反应)和化学溅射。低能离子表面碰撞用于研究新合成的含氟化合物,其中硫醇盐尾基的氟化度增加。数据表明,用CF 3作为末端基团取代CH 3对能量转移,电子转移和原子/基团转移有很大的影响。某些离子表面反应产物的形成说明了轻微渗入SAM膜的深度(先前表征的Langmuir-Blodgett(L-B)膜未观察到结果)。建立了一种新的中和机理,用于甲基阳离子与烃和碳氟化合物SAMs的反应。碳氢化合物和碳氟化合物SAM和传入的甲基阳离子之间发生的氢化物离子转移,甲基阴离子转移或氟化物转移导致了离子中和(除了直接电子转移)。实验性离子表面和离子分子数据支持最初由头算和热化学计算提出的离子中和机理。离子表面过程还用于表征三种混合SAM系统(系统1:羟基/烃混合SAM和系统2和3:碳氟化合物/烃混合SAM)。混合SAM由二元硫醇溶液和不对称二硫化物的均匀溶液制得。这些离子表面数据可用于定性(鉴定样品的化学成分)和定量分析(计算混合SAM的化学种类的表面浓度)。表征了具有低能量离子表面碰撞的在线飞行时间串联(TOF)串联质谱仪。研究涉及测试仪器在有效离子活化(肽裂解)和有机薄膜表面分析方面的多功能性。该原型将有助于将SID进一步实施到商业TOF仪器中,以实现有效的离子活化和表面分析功能。

著录项

  • 作者

    Smith Darrin Lee;

  • 作者单位
  • 年度 2002
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号