首页> 外文OA文献 >Unsteady flows in Io’s atmosphere caused by condensation and sublimation during and after eclipse: Numerical study based on a model Boltzmann equation
【2h】

Unsteady flows in Io’s atmosphere caused by condensation and sublimation during and after eclipse: Numerical study based on a model Boltzmann equation

机译:日食期间和之后的凝结和升华导致艾奥大气中的非恒定流动:基于模型Boltzmann方程的数值研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The behavior of Io’s atmosphere during and after eclipse is investigated on the basis of kinetic theory. The atmosphere is mainly composed of sulfur dioxide (SO2) gas, which condenses to or sublimates from the frost of SO2 on the surface depending on the variation of surface temperature (∼90–114 K). The atmosphere may also contain a noncondensable gas, such as sulfur monoxide (SO) or oxygen (O2), as a minor component. In the present study, an accurate numerical analysis for a model Boltzmann equation by a finite-difference method is performed for a one-dimensional atmosphere, and the detailed structure of unsteady gas flows caused by the phase transition of SO2 is clarified. For instance, the following scenario is obtained. The condensation of SO2 on the surface, starting when eclipse begins, gives rise to a downward flow of the atmosphere. The falling atmosphere then bounces upward when colliding with the lower atmosphere but soon falls again. This process of falling and bounce back of the atmosphere repeats during the eclipse, resulting in a temporal oscillation of the macroscopic quantities, such as the velocity and temperature, at a fixed altitude. For a pure SO2 atmosphere, the amplitude of the oscillation is large because of a fast downward flow, but the oscillation decays rapidly. In contrast, for a mixture, the downward flow is slow because the noncondensable gas adjacent to the surface hinders the condensation of SO2. The oscillation in this case is weak but lasts much longer than in the case of pure SO2. The present paper is complementary to the work by Moore et al. (Moore, C.H., Goldstein, D.B., Varghese, P.L., Trafton, L.M., Stewart, B. [2009]. Icarus 201, 585–597) using the direct simulation Monte Carlo (DSMC) method.
机译:基于动力学理论,研究了日食期间和之后的Io大气行为。大气层主要由二氧化硫(SO2)气体组成,根据表面温度的变化(〜90–114 K),二氧化硫气体凝结到表面的SO2霜中或从中升华。大气还可以包含不可冷凝的气体,例如一氧化硫(SO)或氧气(O2)作为次要成分。在本研究中,对一维大气通过有限差分方法对模型Boltzmann方程进行了精确的数值分析,并阐明了由SO2相变引起的不稳定气流的详细结构。例如,获得以下情形。当日蚀开始时,SO2在表面上的凝结会导致大气向下流动。当下降的空气与较低的空气相撞时,下降的空气然后向上反弹,但很快又下降。在月食期间,这种下降和反弹回大气层的过程会重复进行,从而导致宏观量(例如速度和温度)在固定高度上随时间的波动。对于纯净的SO2气氛,由于向下快速流动,振荡幅度较大,但振荡迅速衰减。相反,对于混合物,向下流动缓慢,因为与表面相邻的不可冷凝气体阻碍了SO2的冷凝。在这种情况下,振荡很弱,但持续时间比纯SO2时长得多。本文是对Moore等人工作的补充。 (Moore,C.H.,Goldstein,D.B.,Varghese,P.L.,Trafton,L.M.,Stewart,B. [2009]。Ic​​arus 201,585-597)使用直接模拟蒙特卡罗(DSMC)方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号