首页> 外文OA文献 >X-33 Attitude Control System Design for Ascent, Transition, and Entry Flight Regimes
【2h】

X-33 Attitude Control System Design for Ascent, Transition, and Entry Flight Regimes

机译:X-33升,降落和进场飞行状态的姿态控制系统设计

摘要

The Vehicle Control Systems Team at Marshall Space Flight Center, Systems Dynamics Laboratory, Guidance and Control Systems Division is designing under a cooperative agreement with Lockheed Martin Skunkworks, the Ascent, Transition, and Entry flight attitude control system for the X-33 experimental vehicle. Ascent flight control begins at liftoff and ends at linear aerospike main engine cutoff (NECO) while Transition and Entry flight control begins at MECO and concludes at the terminal area energy management (TAEM) interface. TAEM occurs at approximately Mach 3.0. This task includes not only the design of the vehicle attitude control systems but also the development of requirements for attitude control system components and subsystems. The X-33 attitude control system design is challenged by a short design cycle, the design environment (Mach 0 to about Mach 15), and the X-33 incremental test philosophy. The X-33 design-to-launch cycle of less than 3 years requires a concurrent design approach while the test philosophy requires design adaptation to vehicle variations that are a function of Mach number and mission profile. The flight attitude control system must deal with the mixing of aerosurfaces, reaction control thrusters, and linear aerospike engine control effectors and handle parasitic effects such as vehicle flexibility and propellant sloshing from the uniquely shaped propellant tanks. The attitude control system design is, as usual, closely linked to many other subsystems and must deal with constraints and requirements from these subsystems.
机译:指导和控制系统部系统动力学实验室的马歇尔太空飞行中心的车辆控制系统团队正在与洛克希德·马丁·斯科克沃斯(Lockheed Martin Skunkworks)签订合作协议,为X-33实验飞行器设计上升,过渡和进入飞行姿态控制系统。上升飞行控制始于升空,结束于线性气溶胶主发动机截止(NECO),而过渡和进入飞行控制始于MECO,并在终点区域能量管理(TAEM)界面结束。 TAEM的发生速度约为3.0马赫。该任务不仅包括车辆姿态控制系统的设计,还包括对姿态控制系统组件和子系统的要求的开发。 X-33姿态控制系统的设计面临设计周期短,设计环境(0马赫至15马赫)以及X-33增量测试理念的挑战。 X-33从设计到启动的周期不到3年,需要并发的设计方法,而测试原理则需要根据车辆的马赫数和任务曲线对设计进行调整。飞行姿态控制系统必须处理飞机表面,反作用控制推进器和线性气钉发动机控制效应器的混合,并处理寄生效应,例如车辆灵活性和形状独特的推进剂坦克引起的推进剂晃动。姿态控制系统设计通常与许多其他子系统紧密联系,并且必须处理这些子系统的约束和要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号