首页> 外文OA文献 >Development of advanced numerical algorithms for kinetic and dynamic simulations of irradiated systems : kinetic Monte Carmelo and dislocation dynamics
【2h】

Development of advanced numerical algorithms for kinetic and dynamic simulations of irradiated systems : kinetic Monte Carmelo and dislocation dynamics

机译:先进的数值算法开发,用于辐照系统的动力学和动力学模拟:动力学蒙特卡梅洛和位错动力学

摘要

Chapter 1udABSTRACTudThis thesis can be framed within the Computational Materials Sci¬ence field, and it has been devoted to the development of two new mod¬els concerning two of the most used methods in the Multiscale Modeling Approach, namely, kinetic Monte Carlo (kMC) and Dislocation Dynamics (DD). The first one aims to describe the diffusion and accumulation of de¬fects created in Radiation Damage, and the second follows the evolution of an ensemble of dislocations responding under some set of external loading conditions. Both methods are indispensable to the study of the change in the mechanical properties of materials exposed to irradiation.udThe manuscript is divided in two main parts. The first one deals with the development of a new synchronous parallel kinetic Monte Carlo algorithm, and the second describes the formulation of a new algorithm to deal with partial dislocation within a DD methodology.ud1.1 Part I: Synchronous Parallel Kinetic Monte CarloudA novel parallel kinetic Monte Carlo (kMC) algorithm formulated on the basis of perfect time synchronicity is presented. The algorithm is intended as a generalization of the standard n-fold kMC method, and is trivially implemented in parallel architectures. In its present form, the al¬gorithm is not rigorous in the sense that boundary conflicts are ignored . We demonstrate, however, that, in the their absence, or if they were correctly accounted for, our algorithm solves the same master equation as the serial method. We test the validity and parallel performance of the method byud1.2. PART II: DISLOCATION DYNAMICS WITH PARTIAL DISLOCATIONSudsolving several pure diffusion problems (i.e. with no particle interactions) with known analytical solution. We also study diffusion-reaction systems with known asymptotic behavior and find that, for large systems with in¬teraction radii smaller than the typical diffusion length, boundary conflicts are negligible and do not affect the global kinetic evolution, which is seen to agree with the expected analytical behavior. We have nevertheless quan¬tified the error incurred by ignoring boundary conflicts and discuss possible ways to make the method rigorous.ud1.2 Part II: Dislocation Dynamics with Par¬tial DislocationsudWe develop a nodal dislocation dynamics (DD) model to simulate plastic processes in crystals with low stacking fault energy where perfect dislocations split into partials, leaving a stacking fault between them. The algorithm has been applied to fcc systems. The model explicitly accounts for all slip systems and Burgers vectors observed in fcc systems, including stack¬ing faults and partial dislocations. We derive simple conservation rules that describe all partial dislocation interactions rigorously and allow us to model and quantify cross-slip processes, the structure and strength of dislocation junctions, and the formation of fcc-specific structures such as stacking fault tetrahedra. The DD framework is built upon isotropic non-singular linear elasticity, and supports itself on information transmitted from the atom¬istic scale. In this fashion, connection between the meso and micro scales is attained self-consistently with core parameters fitted to atomistic data. We perform a series of targeted simulations to demonstrate the capabilities of the model, including dislocation reactions and dissociations and dislo¬cation junction strength. Additionally we map the four-dimensional stress space relevant for cross-slip and relate our findings to the plastic behavior of monocrystalline fcc metals. Finally we study the interaction between a dislocation and a stacking fault tetrahedron (SFT) which is the most typical defect seen in fcc crystals under particle irradiation.
机译:第1章 udABSTRACT ud本论文可以在计算材料科学领域内构建框架,它致力于开发两个新模型,涉及多尺度建模方法中两种最常用的方法,即动力学蒙特卡罗方法。卡洛(kMC)和位错动力学(DD)。第一个目的是描述在辐射损伤中产生的缺陷的扩散和累积,第二个目的是在一些外部载荷条件下响应的位错整体的演变。这两种方法对于研究受辐照材料的机械性能变化都是必不可少的。 ud手稿分为两个主要部分。第一个处理新同步同步动力学蒙特卡洛算法的开发,第二个描述在DD方法内处理部分位错的新算法的制定。 ud1.1第一部分:同步并行动力学蒙特卡洛 ud提出了一种基于完美时间同步性的新型并联动力学蒙特卡罗算法。该算法旨在作为标准n倍kMC方法的概括,并在并行体系结构中轻松实现。就当前形式而言,算法在忽略边界冲突的意义上并不严格。但是,我们证明,在没有它们的情况下,或者如果正确地说明了它们,我们的算法可以解决与串行方法相同的主方程。我们通过 ud1.2测试该方法的有效性和并行性能。第二部分:具有局部错位的错位动力学用已知的解析解解决了几个纯扩散问题(即没有粒子相互作用)。我们还研究了具有渐近行为的扩散反应系统,发现对于相互作用半径小于典型扩散长度的大型系统,边界冲突可以忽略不计,并且不会影响整体动力学演化,这被认为与预期的分析行为。尽管如此,我们还是通过忽略边界冲突来量化误差,并讨论了使方法严格的方法。具有低堆叠缺陷能的晶体中的塑性过程,其中完美的位错分裂成部分,在它们之间留下堆叠缺陷。该算法已应用于fcc系统。该模型明确考虑了在fcc系统中观察到的所有滑动系统和Burgers向量,包括堆垛层错和局部错位。我们得出了简单的守恒规则,严格地描述了所有部分位错的相互作用,并允许我们对交叉滑动过程,位错连接的结构和强度以及fcc特定结构(例如堆积断层四面体)的形成进行建模和量化。 DD框架建立在各向同性的非奇异线性弹性之上,并在从原子尺度传递的信息上支持自身。以这种方式,通过适合于原子数据的核心参数可以自洽地实现细观尺度和微观尺度之间的联系。我们进行了一系列有针对性的模拟,以证明模型的功能,包括位错反应和解离以及位错连接强度。此外,我们绘制了与滑移相关的三维应力空间,并将我们的发现与单晶fcc金属的塑性行为联系起来。最后,我们研究了位错和堆垛层错四面体(SFT)之间的相互作用,这是fcc晶体在粒子辐照下最常见的缺陷。

著录项

  • 作者

    Martínez Sáez Enrique;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 spa
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号