首页> 外文OA文献 >NMR Studies of Ruthenium and Rhodium Complexes. In-situ and Ex-situ Photochemistry
【2h】

NMR Studies of Ruthenium and Rhodium Complexes. In-situ and Ex-situ Photochemistry

机译:钌和铑配合物的NMR研究。原位和异位光化学

摘要

Catalytic processes often involve organometallic complexes, the aims of this thesis were to study some specific ruthenium and rhodium complexes using photochemistry. This allowed their behaviour towards small molecules to be investigated since the coordination and activation of small molecules are fundamental parts of catalytic cycles. A further aim was to study suitable complexs with parahydrogen using time-resolved NMR methods with the intention of measuring p-H2 addition and/or the evolution of the p-H2-derived singlet stateudThe photochemistry of CpRh(CH2CHSiMe3)2 (2.1), CpRh(COE)2 (2.2) and CpRh(COD) (2.3) with DMSO PhSOMe, trimethylvinylsilane and triethylsilane was probed. The photoactivity of 2.3 proved minimal with the main products being associated with the loss of the COD ligand. By contrast, 2.1 and 2.2 undergo the substitution of one or both of the alkene ligands, depending on the nature of the reacting ligand. Complexes 2.1, CpRh(CH2CHSiMe3)(DMSO) (2.4) and CpRh(P*Ph)(C2H4) (3.2) were deemed suitable for time-resolved studies with p-H2. 2.1 was found to form the expected dihydride (3.1) on a 50 ms timescale. 2.4 was also formed 3.1 but its PHIP enhancement was poor and whilst 3.1 did form the expected dihydride product PHIP was not observed.ud[Ru(H)2(CO)(PPh3)(Xantphos)] 5.1 was also synthesised and its reactivity towards a range of small molecules, which included DMSO, CO, ethene and Et3SiH, investigated. These studies revealed that its H2, CO and PPh3 ligands could all be lost photochemically and that the xantphos ligand could switch between κ2-PP and κ3-POP coordination. Time-resolved NMR studies on 5.1, with p-H2, found the H2 addition to the intermediate to occur with a rate of the order of 0.5 s−1. cis-[Ru(H)2(dppp)2] 6.1 was also studied using time-resolved NMR, in this case the rate of H2 addition was faster than the NMR timescales. This allowed the evolution of the p-H2 singlet state to be probed and shown to be as a function of the difference in scalar coupling between the hydrides and the equatorial 31P nuclei.ud
机译:催化过程经常涉及有机金属配合物,本论文的目的是利用光化学方法研究某些特定的钌和铑配合物。由于小分子的配位和活化是催化循环的基本组成部分,因此可以研究它们对小分子的行为。另一个目的是使用时间分辨NMR方法研究合适的对氢配合物,以测量p-H2的加成和/或p-H2衍生的单重态的演变 udCpRh(CH2CHSiMe3)2(2.1 ),CpRh(COE)2(2.2)和CpRh(COD)(2.3)以及DMSO PhSOMe,三甲基乙烯基硅烷和三乙基硅烷的探针。证明2.3的光活性很小,主要产物与COD配体的损失有关。相反,取决于反应的配体的性质,2.1和2.2经历一个或两个烯烃配体的取代。配合物2.1,CpRh(CH2CHSiMe3)(DMSO)(2.4)和CpRh(P * Ph)(C2H4)(3.2)被认为适用于使用p-H2进行时间分辨的研究。发现2.1在50毫秒的时间尺度上形成了预期的二氢化物(3.1)。也形成了2.4 3.1,但是它的PHIP增强差并且虽然没有形成3.1预期的二氢产物PHIP。 ud [Ru(H)2(CO)(PPh3)(Xantphos)] 5.1也被合成并且它的反应性针对一系列小分子,包括DMSO,CO,乙烯和Et3SiH,进行了研究。这些研究表明,它的H2,CO和PPh3配体都可能光化学损失,而黄腐磷配体可以在κ2-PP和κ3-POP配位之间转换。用p-H2在5.1上进行的时间分辨NMR研究发现,将H2加到中间体中的速率约为0.5 s-1。还使用时间分辨NMR研究了顺式[Ru(H)2(dppp)2] 6.1,在这种情况下,H2的添加速度快于NMR时标。这样就可以探测到p-H2单重态的演化,并显示出它是氢化物与赤道31P核之间标量耦合差异的函数。

著录项

  • 作者

    Henshaw Sarah-Louise;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号