首页> 外文OA文献 >超小型深宇宙探査機のための超軽量熱制御システムに関する研究
【2h】

超小型深宇宙探査機のための超軽量熱制御システムに関する研究

机译:超小型深空探测器的超轻热控系统研究

摘要

Deep space exploration has one of its motivations in the human endeavor to explore the resources of the Solar System, while the space exploration programs motivate the young people to study in science and engineering. Recently, the size and cost of the satellites missions have been reduced and nowadays many universities have the capability to build small satellites and spacecraft. The continuous improvement in micro spacecraft technologies can increase the space travel reliability. Also, through the small deep space probes missions which aim in collecting space flight data and returning them to Earth, the thermal protection systems for the future human space missions can be validated. Some of the biggest challenges related to these missions are the harsh thermal environment of deep space and the atmospheric re-entry. The aim of this research is to address the two aspects, the one related to the harsh thermal environment of outer space, for which the study case will be represented by Shinen2 deep space mission, and the one related to atmospheric re-entry, focused on the validation of the ablative materials called LATS (Light-weight Ablator Series for Transport Vehicle Systems). The both studies are contributing in enhancing the knowledge and in developing new technologies related to a future small spacecraft mission, led by universities. To accomplish the objectives of the research, the following studies have been done: ・Development of a passive thermal control method for a deep space probe (Shinen2), having an outer structure made of CFRTP (Carbon Fiber Reinforced Thermoplastics) materials (first time used for a space vehicle); ・ Development and validation of empirical and numerical methods to estimate the recession rate of LATS materials during re-entry; The thesis include five chapters. First chapter is the Introduction Chapter, describing the motivation for ultra-small spacecraft missions led by universities, the harsh environment of deep space and during atmospheric reentry, the challenges in designing the thermal system, and also the objectives and the structure of the thesis. Chapter two presents a description of the various methods to design a thermal control system, suitable for a deep space mission like Shinen2, about the thermomechanical properties of CFRTP and LATS materials and about the numerical and empirical methods used to test the efficiency of LATS materials. Chapter three comprises the orbit analysis, the thermal design, analysis and validation of the ultra-small deep space probe, Shinen2, developed by Kyushu Institute of Technology in collaboration with Kagoshima University and launched on December 2014. For reasons of weight saving and power saving, Shinen2 did not carry a heater to warm itself. A passive thermal control of a deep space probe is very difficult to be attained and the thermal design of Shinen2 didn’t have a precedent model. Chapter four focuses on the study of light thermal protection systems for re-entry spacecraft, using LATS materials. To study the thermal performances of LATS materials, numerical and empirical studies were performed using the flight data of USERS spacecraft and the results of high enthalpy heating tests, performed at Japan Aerospace Exploration Agency (JAXA, Japan). The Conclusions chapter, Chapter five, summarizes the findings of the research and describes a conceptual design of the thermal system for a future ultra-small spacecraft mission, led by universities. Also, Chapter five describes the recommendations for future studies. The main findings of the research are that the developed passive thermal control of Shinen2 was proven reliable in deep space and LATS ablative materials were proven to have high thermal efficiency and they can well function as heat shield materials even under a highenthalpy flow, in spite of their low density.
机译:深空探索是人类努力探索太阳系资源的动机之一,而空间探索计划则激励年轻人学习科学和工程学。最近,减少了卫星飞行任务的规模和成本,如今,许多大学都具有制造小型卫星和航天器的能力。微型航天器技术的不断改进可以提高太空旅行的可靠性。此外,通过旨在收集太空飞行数据并将其返回地球的小型深空探测任务,可以验证未来人类太空飞行任务的热保护系统。与这些任务有关的最大挑战是深空的恶劣热环境和大气的再进入。这项研究的目的是要解决两个方面,一个与外层空间的恶劣热环境有关,其中以Shinen2深空飞行任务为代表,而与大气再进入有关的一个方面则侧重于对称为LATS(运输车辆系统的轻型烧蚀器系列)的烧蚀材料的验证。两项研究都有助于增进知识,并开发与大学领导的未来小型航天器任务有关的新技术。为了实现研究目的,进行了以下研究:・开发了一种外部结构采用碳纤维增强热塑性塑料(CFRTP)制成的深空探测器(Shinen2)的被动热控制方法(首次使用用于航天器);・开发和验证经验和数值方法,以估计再进入时LATS材料的衰退率;本文共分五章。第一章为导言章,介绍了大学主导的超小型航天器飞行的动机,深空的恶劣环境和大气折返期间,热系统设计的挑战以及论文的目的和结构。第二章介绍了设计热控制系统的各种方法,这些方法适用于像Shinen2这样的深空飞行任务,涉及CFRTP和LATS材料的热机械性能,以及用于测试LATS材料效率的数值和经验方法。第三章包括九州工业大学与鹿儿岛大学合作于2014年12月推出的超小型深空探测器Shinen2的轨道分析,热设计,分析和验证。该技术于2014年12月发布。 ,Shinen2没有携带加热器进行自我加热。很难实现对深空探测器的被动热控制,而且Shinen2的热设计没有先例。第四章重点研究使用LATS材料的重入航天器的光热防护系统。为了研究LATS材料的热性能,使用了USERS航天器的飞行数据以及在日本航空航天局(JAXA,日本)进行的高焓加热试验的结果,进行了数值和经验研究。结论章,第五章,总结了研究结果,并描述了由大学领导的未来超小型航天器飞行任务的热系统的概念设计。另外,第五章介绍了对未来研究的建议。该研究的主要发现是,已开发出的Shinen2被动热控制技术在深空被证明是可靠的,而LATS烧蚀材料被证明具有很高的热效率,即使在高焓流下,它们也可以很好地用作隔热材料,尽管它们的密度低。

著录项

  • 作者

    Szasz Bianca Adina;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号