首页> 外文OA文献 >高密度プラズマ下で大電力マイクロ波放射を行うアンテナ表面の放電現像
【2h】

高密度プラズマ下で大電力マイクロ波放射を行うアンテナ表面の放電現像

机译:高密度等离子体下发射高功率微波辐射的天线表面的放电发展

摘要

The space solar power system (SSPS) transfers enormous amounts of electrical energy through microwave or laser. SSPS must have very large and light-weight structures to collect the solar energy. The surface is covered with solar photovoltaic cells to collect and transform the incoming solar radiation into DC electricity. The transmission to ground would be performed with microwaves. Considered microwave frequency is 5.8 GHz. For conversion a large number of active elements together with carbon-fiber slotted wave guides or patch/microstrip antennas may be used. Flight demonstration onboard a small satellite in low Earth orbit (LEO) is now under consideration. When high-power microwaves are irradiated from an antenna in LEO plasma environment, there is a concern about multi-pactoring discharge caused by interaction between the plasma and the microwaves. There has been no experimental observation of such an interaction phenomenon. Verification experiments are essential for SSPS to become a reality. We have set-up an experimental system that can simulate the radiation of high power microwave in dense plasma in a vacuum chamber. A RF plasma source is installed to the chamber and can now produce the Argon plasma environment of density from 1011 to 1013m-3 with 4eV to 6eV temperature under a back pressure of 1.9x10-5Pa. A patch antenna with Teflon or Glass epoxy substrate has been installed inside the vacuum chamber. The antenna is connected to a magnetron that can produce 5.8GHz microwave up to 400W continuous power. I examine interaction between patch antenna surface and microwave in a vacuum chamber. I observe discharge on the patch antenna depending on the microwave strength and plasma environment. This thesis is made of five chapters. The first chapter introduces the general objective of study. The second chapter describes the experimental experimental setup and procedure. The third chapter reports the experimental results. The fourth chapter compares a hypothesis about the discharge inception mechanism against the experimental results. The fifth chapter concludes the paper with suggestions to the future works.
机译:太空太阳能系统(SSPS)通过微波或激光传输大量电能。 SSPS必须具有非常大的重量轻的结构才能收集太阳能。该表面覆盖有太阳能光伏电池,以收集入射的太阳辐射并将其转换为直流电。地面传输将通过微波进行。所考虑的微波频率为5.8 GHz。为了进行转换,可以使用大量有源元件以及碳纤维缝隙波导或贴片/微带天线。目前正在考虑在低地球轨道(LEO)的小型卫星上进行飞行演示。当在LEO等离子体环境中从天线发射大功率微波时,会担心由等离子体与微波之间的相互作用引起的多排放电。还没有实验观察到这种相互作用现象。验证实验对于SSPS成为现实至关重要。我们已经建立了一个实验系统,该系统可以模拟真空室中高密度等离子体中高功率微波的辐射。 RF等离子体源安装到腔室中,现在可以在1.9x10-5Pa的背压下以4eV至6eV的温度产生密度为1011至1013m-3的氩等离子体环境。在真空室内已安装了带有聚四氟乙烯或环氧玻璃基板的贴片天线。天线连接到磁控管,该磁控管可以产生5.8 GHz微波,最高连续功率为400W。我研究了真空室内贴片天线表面与微波之间的相互作用。我观察到贴片天线上的放电取决于微波强度和等离子体环境。本文共分五章。第一章介绍了研究的总体目标。第二章介绍了实验性的实验设置和过程。第三章报道了实验结果。第四章比较了放电开始机理和实验结果的假设。第五章总结全文,并对未来的工作提出建议。

著录项

  • 作者

    Woo Hyoung-Gwan;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号