首页> 外文OA文献 >Imagerie sismique quantitative de la marge convergente d'Equateur-Colombie : Application des mèthodes tomographiques aux données de sismique réflexion multitrace et réfraction-réflexion grand-angle des campagnes SISTEUR et SALIERI
【2h】

Imagerie sismique quantitative de la marge convergente d'Equateur-Colombie : Application des mèthodes tomographiques aux données de sismique réflexion multitrace et réfraction-réflexion grand-angle des campagnes SISTEUR et SALIERI

机译:厄瓜多尔-哥伦比亚会聚边缘的定量地震图像:层析成像方法在SISTEUR和SALIERI活动中的多迹线反射和广角折射-反射地震数据中的应用

摘要

This work's main aim is the estimation of the physical properties and the analysis of the geodynamic process of the Ecuador-Colombian subduction zone. I adapted and developped seismic imaging tools based on diffraction tomography. This tools are applied to multichannel seismic reflection (MCS) data and reflection/refraction wide-angle (WA) data acquired during SISTEUR and SALIERI cruises. Quantitative seismic imaging is presented for three zones : shallow zone (~ 0-3 km), intermediate zone (~ 3-10 km) and deep zone (~ 10-30 km). In the shallow zone the profile SIS-40 on the Colombian margin was processed and physical properties of the Bottom Simulating Reflector (BSR) were estimated. Along the BSR regions with relative increase of the velocity (1470-1650 m/s), were obtained and associated with the presence of hydrates above the BSR and regions with relative decrease of the velocity (~1200 m/s), associated with gaz below the BSR. In the intermediate zone, I analysed the subduction channel (profil SIS-72). This structure is between the decollement (top of the subduction channel) ant the top of the oceanic crust (bottom). In some area the decollement exhibits relative velocity decrease possibly due to the presence of fluids inside and below the decollement. I design an integrated approach to obtain the small scale velocities around the decollement area. The integrated approach is based on 2 steps: (1) asymptotic waveform inversion with iterative correction of the velocity macro-model and to obtain a 2-D quantitative depth model for velocity; (2) an automated post-processing procedure to eliminate the source signature from the tomographic images and to estimate the absolute values of the velocity along the decollement. The post-processing is formulated as an automatic non-linear inverse problem where the data space is composed of several one-dimensional logs extracted for different offset from the depth migrated image. The model space is composed of a family of realistic impulse layered models in depth, parameterized by a limited number of parameters (random velocity amplitude and a random thickness for each layer). These models mimick the logs of the physical model searched. To build the predicted dataset, the tested logs are converted from space to time using the velocity of the background medium and are convolved with the source wavelet. To estimate the source wavelet we use an average of the direct wave. The predicted dataset are computed by convolution of the depth-to-time converted impulse models with the source wavelet and compared with the tomographic models. The inverse problem is solved by a random exploration of the model space for each offset, using the very fast simulating anealing algorithm (VFSA). A small scale velocity model is obtained. Positve velocity perturbations appear at the top of the oceanic crust. The decollement is characterized by regions with positve velocity perturbations probably associated with fluids diffusion up to the decollement and regions with negative velocity perturbations probably related to the channeling of the fluids. Deep structures are imaged by a combined approach of MCS and WA data to improve the spatial resolution of the Moho and of interplate contact and to establish a possible relation with the seismogenic zone. A well constrained velocity model between 0 and 25 km is obtained and deep reflectors such as the Moho and the interplate contact are imaged as well the existence of the splay fault is validated (the splay fault was not clearly identified on the time stack section
机译:这项工作的主要目的是估算厄瓜多尔-哥伦比亚俯冲带的物理性质,并对地球动力学过程进行分析。我改编和开发了基于衍射层析成像的地震成像工具。该工具适用于在SISTEUR和SALIERI航行中获取的多通道地震反射(MCS)数据和反射/折射广角(WA)数据。给出了三个区域的定量地震成像:浅层区域(〜0-3 km),中间区域(〜3-10 km)和深层区域(〜10-30 km)。在浅层地区,对哥伦比亚边缘的SIS-40剖面进行了处理,并估算了底部模拟反射器(BSR)的物理性质。沿BSR区域获得了速度相对增加(1470-1650 m / s)的区域,并与BSR上方水合物的存在有关,并且与速度相对降低(〜1200 m / s)的区域相关,与gaz有关低于BSR。在中间区域,我分析了俯冲通道(剖面SIS-72)。这种结构在磁偏角(俯冲通道的顶部)和洋壳顶部(底部)之间。在某些区域,脱折部表现出相对速度降低,这可能是由于在脱折部内部和下方存在流体。我设计了一种集成的方法来获取绕弯区域附近的小规模速度。集成方法基于两个步骤:(1)渐进波形反演,对速度宏模型进行迭代校正,并获得速度的二维定量深度模型; (2)一种自动化的后处理程序,可从断层图像中消除源签名,并估算沿偏转方向的速度绝对值。后处理公式化为自动非线性逆问题,其中数据空间由针对深度偏移图像的不同偏移量提取的几个一维测井记录组成。模型空间由一系列深度的逼真的脉冲分层模型组成,并由有限数量的参数(每层随机速度振幅和随机厚度)进行参数化。这些模型模仿了搜索到的物理模型的日志。为了建立预测数据集,使用背景介质的速度将测试日志从空间转换为时间,并与源小波卷积。为了估计源子波,我们使用直接波的平均值。通过将深度-时间转换后的脉冲模型与源小波进行卷积来计算预测的数据集,并将其与层析成像模型进行比较。通过使用非常快速的模拟密封算法(VFSA),对每个偏移量的模型空间进行随机探索,可以解决反问题。获得了小比例速度模型。正速度扰动出现在洋壳的顶部。脱折的特征在于具有可能与流体扩散直至脱折相关的正速度扰动的区域和具有可能与流体的通道有关的负速度扰动的区域。通过MCS和WA数据的组合方法对深层结构进行成像,以改善莫霍面和板间接触的空间分辨率,并与成地震带建立可能的关系。获得了一个介于0到25 km之间的约束良好的速度模型,并对诸如Moho和板间接触之类的深反射器成像,并验证了张开断层的存在(在时间叠层剖面上未明确识别出张开断层。

著录项

  • 作者

    Agudelo William;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 fr
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号