首页> 外文OA文献 >Modelling and optimisation of oxidative desulphurization process for model sulphur compounds and heavy gas oil. Determination of Rate of Reaction and Partition Coefficient via Pilot Plant Experiment; Modelling of Oxidation and Solvent Extraction Processes; Heat Integration of Oxidation Process; Economic Evaluation of the Total Process.
【2h】

Modelling and optimisation of oxidative desulphurization process for model sulphur compounds and heavy gas oil. Determination of Rate of Reaction and Partition Coefficient via Pilot Plant Experiment; Modelling of Oxidation and Solvent Extraction Processes; Heat Integration of Oxidation Process; Economic Evaluation of the Total Process.

机译:模型硫化合物和重瓦斯油氧化脱硫过程的建模和优化。通过中试实验确定反应速率和分配系数;氧化和溶剂萃取过程的建模;氧化过程的热整合;全过程的经济评估。

摘要

Heightened concerns for cleaner air and increasingly more stringent regulations onudsulphur content in transportation fuels will make desulphurization more and moreudimportant. The sulphur problem is becoming more serious in general, particularly foruddiesel fuels as the regulated sulphur content is getting an order of magnitude lower,udwhile the sulphur contents of crude oils are becoming higher. This thesis aimed touddevelop a desulphurisation process (based on oxidation followed by extraction) withudhigh efficiency, selectivity and minimum energy consumption leading to minimumudenvironmental impact via laboratory batch experiments, mathematical modelling andudoptimisation.udDeep desulphurization of model sulphur compounds (di-n-butyl sulphide, dimethyludsulfoxide and dibenzothiophene) and heavy gas oils (HGO) derived from Libyan crudeudoil were conducted. A series of batch experiments were carried out using a small reactorudoperating at various temperatures (40 ¿ 100 0C) with hydrogen peroxide (H2O2) asudoxidant and formic acid (HCOOH) as catalyst. Kinetic models for the oxidation processudare then developed based on `total sulphur approach¿. Extraction of unoxidised andudoxidised gas oils was also investigated using methanol, dimethylformamide (DMF) andudN-methyl pyrolidone (NMP) as solvents. For each solvent, the `measures¿ such as: theudpartition coefficient (KP), effectiveness factor (Kf) and extractor factor (Ef) are used toudselect the best/effective solvent and to find the effective heavy gas oil/solvent ratios.udA CSTR model is then developed for the process for evaluating viability of the largeudscale operation. It is noted that while the energy consumption and recovery issues couldudbe ignored for batch experiments these could not be ignored for large scale operation.udLarge amount of heating is necessary even to carry out the reaction at 30-40 0C, theudrecovery of which is very important for maximising the profitability of operation andudalso to minimise environmental impact by reducing net CO2 release. Here the heatudintegration of the oxidation process is considered to recover most of the external energyudinput. However, this leads to putting a number of heat exchangers in the oxidationudprocess requiring capital investment. Optimisation problem is formulated usingudgPROMS modelling tool to optimise some of the design and operating parameters (suchudas reaction temperature, residence time and splitter ratio) of integrated process whileudminimising an objective function which is a coupled function of capital and operatingudcosts involving design and operating parameters. Two cases are studied: where (i) HGOudand catalyst are fed as one feed stream and (ii) HGO and catalyst are treated as two feedudstreams.udA liquid-liquid extraction model is then developed for the extraction of sulphurudcompounds from the oxidised heavy gas oil. With the experimentally determined KPudmulti stage liquid-liquid extraction process is modelled using gPROMS software and theudprocess is simulated for three different solvents at different oil/solvent ratios to select the best solvent, and to obtain the best heavy gas oil to solvent ratio and number ofudextraction stages to reduce the sulphur content to less than 10 ppm.udFinally, an integrated oxidation and extraction steps of ODS process is developed basedudon the batch experiments and modelling. The recovery of oxidant, catalyst and solventudare considered and preliminary economic analysis for the integrated ODS process isudpresented.
机译:对清洁空气的日益关注以及对运输燃料中硫含量日益严格的法规将使脱硫越来越重要。总的来说,硫的问题变得越来越严重,特别是对于柴油燃料,因为规定的硫含量降低了一个数量级,而原油的硫含量却越来越高。本论文旨在通过实验室批量试验,数学建模和优化设计,以高效率,选择性和最低能耗开发脱硫工艺(基于氧化再萃取),以实现对环境的最小影响。对模型硫进行深度脱硫进行了由利比亚粗 udoil衍生的化合物(二正丁基硫化物,二甲基二亚砜二苯并噻吩)和重瓦斯油(HGO)的研究。使用小型反应器进行一系列分批实验,该反应器在不同温度(40°C 100 0C)下过氧化氢(H2O2)作为过氧化物和甲酸(HCOOH)作为催化剂。然后基于“全硫法”建立了氧化过程的动力学模型。还使用甲醇,二甲基甲酰胺(DMF)和udN-甲基吡咯烷酮(NMP)作为溶剂,研究了未氧化和过氧化的粗柴油的萃取。对于每种溶剂,使用诸如“分配系数(KP),有效因子(Kf)和提取因子(Ef)”之类的“措施”来 ud选择最佳/有效溶剂并找到有效的重瓦斯油/溶剂。然后开发CSTR模型用于评估大型 udscale操作的可行性的过程。值得注意的是,虽然对于批量实验而言,能量消耗和回收率的问题可以忽略不计,但对于大规模操作而言,这是不容忽视的。即使在30-40 0C下进行反应,也需要大量加热,这对于最大化运营盈利能力以及通过减少净二氧化碳排放量来最大程度地降低环境影响非常重要。在这里,氧化过程的热量 udintegra被认为是恢复大部分外部能量 udinput。然而,这导致将许多热交换器置于氧化 ud过程中,需要资本投资。使用 udgPROMS建模工具来制定优化问题,以优化集成过程的一些设计和操作参数(例如 udas反应温度,停留时间和分流比),同时最小化目标函数,该目标函数是资本与运营的耦合函数涉及设计和操作参数的成本。研究了两种情况:(i)将HGO udand催化剂作为一条进料流进料,(ii)HGO和催化剂被视为两条进料 udstreams。 ud然后开发了液-液萃取模型来萃取硫氧化重瓦斯油中的化合物。通过实验确定的KP ud多级液-液萃取过程,使用gPROMS软件进行建模,并针对三种不同溶剂以不同的油/溶剂比对 ud过程进行仿真,以选择最佳溶剂,并获得最佳的重油与溶剂最后,基于批处理实验和建模,开发了ODS工艺的集成氧化和萃取步骤。提出了氧化剂,催化剂和溶剂的回收方法,并提出了综合ODS工艺的初步经济分析。

著录项

  • 作者

    Khalfalla Hamza Abdulmagid;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号