首页> 外文OA文献 >Design and processing of low alloy high carbon steels by powder metallurgy. P/M processing and liquid phase sintering of newly designed low-alloy high carbon steels based on Fe-0.85Mo-C-Si-Mn with high toughness and strength.
【2h】

Design and processing of low alloy high carbon steels by powder metallurgy. P/M processing and liquid phase sintering of newly designed low-alloy high carbon steels based on Fe-0.85Mo-C-Si-Mn with high toughness and strength.

机译:低合金高碳钢的粉末冶金设计与加工。基于高韧性和强度的基于Fe-0.85Mo-C-Si-Mn的新型低合金高碳钢的P / M处理和液相烧结。

摘要

The work presented has the ultimate aim to increase dynamic mechanical properties by improvements in density and optimisation of microstructure of ultra high carbon PM steels by careful selection of processes, i.e. mixing, binding, alloying, heating profile and intelligent heat treatment. ThermoCalc modelling was employed to predict liquid phase amounts for two different powder grades, Astaloy 85Mo or Astaloy CrL with additive elements such as (0.4-0.6wt%)Si, (1.2-1.4wt%)C and (1-1.5wt%)Mn, in the sintering temperature range 1285-1300ºC and such powder mixes were pressed and liquid phase sintered. In high-C steels carbide networks form at the prior particle boundaries, leading to brittleness, unless the steel is heat-treated. To assist the breaking up of these continuous carbide networks, 0.4-0.6% silicon, in the form of silicon carbide, was added. The water gas shift reaction (C + H2O = CO + H2, start from ~500ºC) and Boudouard reaction (from ~500ºC complete ~930ºC) form CO gas in the early part of sintering and can lead to large porosity, which lowers mechanical properties. With the use of careful powder drying, low dew point atmospheres and optimisation of heating profiles, densities in excess of 7.70g/cm3 were attained. The brittle microstructure, containing carbide networks and free of cracks, is transformed by intelligent heat treatment to a tougher one of ferrite plus sub-micron spheroidised carbides. This gives the potential for production of components, which are both tough and suitable for sizing to improve dimensional tolerance. Yield strengths up to 410 MPa, fracture strengths up to 950 MPa and strains of up to 16 % were attained. Forging experiments were subsequently carried out for spheroidised specimens of Fe-0.85Mo+06Si+1.4C, for different strain rates of 10-3, 10-2, 10-1 and 1sec-1 and heated in argon to 700¿C, density ~7.8g/cm3 and 769 MPa yield strength were obtained.
机译:提出的工作的最终目的是通过仔细选择工艺(即混合,粘结,合金化,加热曲线和智能热处理)来提高超高碳PM钢的密度和优化显微组织,从而提高动态力学性能。使用ThermoCalc建模来预测两种不同粉末等级的Adaloy 85Mo或Astaloy CrL粉末的液相量,其添加元素为(0.4-0.6wt%)Si,(1.2-1.4wt%)C和(1-1.5wt%) Mn,烧结温度范围为1285-1300ºC,并压制这种粉末混合物并进行液相烧结。在高碳钢中,除非对钢进行热处理,否则碳化物网络会在先前的颗粒边界处形成,导致脆性。为了帮助破坏这些连续的碳化物网络,添加了0.4-0.6%的碳化硅形式的硅。在烧结初期,水煤气变换反应(C + H2O = CO + H2,始于〜500ºC)和Boudouard反应(始于〜500ºC至约930ºC)形成CO气体,并可能导致大孔隙率,从而降低了机械性能。通过小心地进行粉末干燥,低露点气氛和优化加热曲线,可以实现超过7.70g / cm3的密度。脆性的微观结构包含碳化物网络且没有裂纹,通过智能热处理将其转变为铁素体和亚微米球化碳化物中更坚硬的一种。这提供了制造零件的潜力,这些零件既坚固又适合于定型以提高尺寸公差。屈服强度高达410 MPa,断裂强度高达950 MPa,应变高达16%。随后对Fe-0.85Mo + 06Si + 1.4C的球形试样进行了锻造实验,以10-3、10-2、10-1和1sec-1的不同应变速率在氩气中加热至密度为700°C获得〜7.8g / cm3和769 MPa的屈服强度。

著录项

  • 作者

    Abosbaia Alhadi Amar Salem;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号