首页> 外文OA文献 >Augmentation de l'énergie des faisceaux de proton accélérés par laser ultra-intense et étude des caractéristiques des faisceaux accélérés par laser ultra-court
【2h】

Augmentation de l'énergie des faisceaux de proton accélérés par laser ultra-intense et étude des caractéristiques des faisceaux accélérés par laser ultra-court

机译:超强激光加速的质子束能量的增加以及超短激光加速的质子束的特性研究

摘要

Technological improvements since the 1980s have allowed for important developments in the field of high power lasers, thus paving the way for relativistic laser-matter interactions. With laser intensities higher than 1.1018 W.cm-2, the scientific community could explore a new physics, full of promising applications. Historically, laser–plasma interaction research initially aimed at exploring fusion by inertial confinement, but, with the breakthrough of ultra-high power lasers, the scope of research could now be broadened to laboratory astrophysics, radiation generation (harmonics, betatron, X) and the production of high energy particles (electrons, ions). Regarding the latter, radiation and ion sources are of such excellent quality that they might in the future replace current conventional sources like synchrotrons or accelerators, which require very expensive facilities. This thesis focuses particularly on laser-driven ion acceleration, whose accelerated beams have already demonstrated strong potential, e.g. in ultrafast imaging or warm dense matter generation.Within this domain, the present work focused on strategies developed to increase the ion beam energy in the ultrahigh intensity regime (higher than 1.1019 W.cm-2), exploiting as well moderate (400 fs) and short (25 fs) pulses facilities available as a result of the collaboration between the LULI laboratory in France and the INRS-EMT in Quebec. Innovative acceleration techniques have been explored at the LULI laboratory using moderately short laser pulses (400 fs to a few ps). This has been done first by improving our understanding of acceleration physics. Then, confinement of the laser-driven fast electrons that are at the source of the ion acceleration could be obtained by using reduced size targets. With such targets, electron confinement in the acceleration area could be achieved, inducing improvement of the laser to ions conversion efficiency, the ion beam cut off energy, and the ion beam quality. Another strategy that was exploited was to use refocalizing plasma optics to produce strongly reduced laser focal spot sizes. This induces laser intensity increase and thus improvement of the ion beam cut off energy. Finally, we used the combination of two laser pulses to have the electrons accelerated by each laser pulse interact together. When this was the case, we noted an increase of the ion beam cut off energy along with a modification of the beam typology. Complementarily, the experiments carried out using the 200 TW laser system in Quebec aimed at improving our understanding of femtosecond ion acceleration regimes, as only a fewexperimental studies were yet available, and to confirm the relevance of these regimes for ion acceleration. The results obtained with this laser clearly show the important role of the laser pulse contrast ratio, and the need for it to be extremely high to obtain efficient ion acceleration in this ultrashort regime. The systematic recording of accelerated ion beams has showed that a quasisymmetric acceleration from the target front and rear sides is possible. These results have alsoproved that the highest proton energy is not necessarily obtained with the shortest pulse duration when the laser energy is kept constant. Thus, we demonstrated that the shortest pulses available today (i.e. 25 fs) are not the most efficient to accelerate ion beams.
机译:自1980年代以来的技术进步已使高功率激光器领域取得了重要进展,从而为相对论的激光与物质的相互作用铺平了道路。利用高于1.1018 W.cm-2的激光强度,科学界可以探索充满希望的应用新的物理学。从历史上看,激光-等离子体相互作用的研究最初旨在通过惯性约束来探索聚变,但是随着超高功率激光器的突破,研究范围现在可以扩展到实验室天体物理学,辐射生成(谐波,倍增子,X)和高能粒子(电子,离子)的产生。关于后者,辐射和离子源的质量如此出色,以至于它们将来可能会取代目前的常规源,例如同步加速器或加速器,而后者需要非常昂贵的设施。本论文特别关注激光驱动的离子加速,其加速束已经显示出强大的潜力,例如。在此领域内,本工作重点研究了在中等强度(400 fs)的情况下提高超高强度态(高于1.1019 W.cm-2)的离子束能量的策略。法国的LULI实验室和魁北克的INRS-EMT之间的合作使短脉冲(25 fs)脉冲设备成为可能。在LULI实验室中,使用中等短的激光脉冲(400 fs至几ps)探索了创新的加速技术。这首先是通过增进我们对加速度物理学的理解来完成的。然后,可以通过使用减小尺寸的目标来限制在离子加速源处的激光驱动快电子。利用这样的目标,可以实现将电子限制在加速区域中,从而引起激光到离子的转换效率,离子束截止能量和离子束质量的提高。开发的另一种策略是使用重新聚焦等离子光学器件来产生大大减小的激光焦点尺寸。这引起激光强度的增加,从而改善了离子束的截止能量。最后,我们使用两个激光脉冲的组合使每个激光脉冲加速的电子相互作用在一起。在这种情况下,我们注意到离子束截止能量的增加以及离子束类型的改变。作为补充,在魁北克使用200 TW激光系统进行的实验旨在增进我们对飞秒离子加速机制的了解,因为目前只有少数实验研究可用,并证实了这些机制与离子加速的相关性。用这种激光器获得的结果清楚地表明了激光脉冲对比度的重要作用,并且在这种超短条件下,为了获得有效的离子加速,对它的要求非常高。加速离子束的系统记录表明,从目标前侧和后侧准对称加速是可能的。这些结果还证明了当激光能量保持恒定时,不一定以最短的脉冲持续时间获得最高的质子能量。因此,我们证明了当今最短的脉冲(即25 fs)并不是加速离子束的最有效方法。

著录项

  • 作者

    Buffechoux Sébastien;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 fr
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号