首页> 外文OA文献 >De automatische dodehoekcamera: hard real-time detectie van bewegende objecten vanaf een bewegende camera
【2h】

De automatische dodehoekcamera: hard real-time detectie van bewegende objecten vanaf een bewegende camera

机译:自动盲点摄像头:从运动的摄像头实时实时检测运动对象

摘要

Each year traffic accidents caused by the blind spot zone of trucks are responsible for an estimate of about 1300 casualties in Europe alone. To cope with these blind spot zones, several commercial systems were developed. However, each of them has specific disadvantages, and as such none of them seems to handle the blind spot problem completely. The most widely used safety systems are the - since 2003 obliged by law - blind spot mirrors. Furthermore, often blind spot cameras are employed. These systems display the blind spot zone on a monitor in the truck's cabin - using wide-angle lenses - when a right hand turn is signalled. More recently, active safety systems are used (such as ultrasonic distance sensors), which automatically generate an alarm towards the truck driver. However, these systems fail to distinguish static objects (i.e. traffic signs) from VRUs and often generate false positive alarms.Therefore, in this dissertation we describe an active safety system relying solely on the input images from the blind spot camera. Using computer vision object detection methodologies, our system is able to efficiently detect VRUs in the challenging blind spot images, and automatically warns the truck driver of their presence. Such a system has several advantages: it is always adjusted correctly, is easily integratable in existing passive blind spot camera setups, does not rely on the attentiveness of the truck driver and is able to distinguish VRUs from static objects. However, developing such a safety system is not an easy task. These VRUs are multiclass (they consist of pedestrians, bicyclists, children and so on) and appear in very diverse viewpoints and poses. Additionally, we need to cope with the large viewpoint and lens distortion induced by traditional blind spot cameras. Finally, our specific application inherently requires extremely stringent demands with respect to the detection accuracy, throughput and latency. Indeed, excellent accuracy results need to be achieved for such a system to be usable in real-life scenarios, at real-time processing speeds. However, assuring hard real-time detection behaviour contradicts with the requirement for high detection accuracy. Specifically, object detection methodologies often require significant computational power to achieve high accuracy. As such, traditionally a trade-off exists between accuracy and throughput when only limited hardware is available. This is unfeasible for our application: our active safety system should achieve excellent accuracy results and at the same time should run in real-time on low-cost embedded hardware. We developed a methodology that eliminates this trade-off. The advantage of this contribution is two-fold. First, it allows for the detection of VRUs in challenging images where existing object detectors fail (due to the specific viewpoint and lens distortion). Second, this approach enables the use of highly accurate object detection methodologies which would otherwise be too time consuming. As such, we achieve excellent accuracy at real-time processing speeds. To validate this, we acquired a unique and valuable dataset recorded with a genuine blind spot camera mounted on a real truck in which several dangerous blind spot scenarios were simulated. This dataset increased in size and complexity throughout this dissertation. This initial methodology enabled the efficient detection and tracking of pedestrians in our blind spot camera images. We proved that this methodology easily generalises itself to other scenarios with similar viewpoint. Furthermore, we presented additional contributions towards an increase in detection accuracy. We developed a methodology that enables the efficient combination of multiple pedestrian detectors, extended our initial approach to better model the specific distortion and developed a method to enable multiclass detection. Finally, we further optimised and integrated the aforementioned methodologies, and presented a final vision-based only active safety system for the blind spot zone. We conclude that our final active safety system manages to meet the stringent accuracy and latency demands required for such a system to be usable in practice.
机译:每年由卡车盲区引起的交通事故仅在欧洲就造成约1300人伤亡。为了应对这些盲区,开发了几种商业系统。但是,它们每个都有特定的缺点,因此它们似乎都不能完全解决盲区问题。自2003年以来,根据法律规定,使用最广泛的安全系统是盲点镜。此外,经常使用盲点相机。这些系统会在信号灯向右转弯时,使用广角镜在卡车驾驶室的监视器上显示盲区。最近,使用了主动安全系统(例如超声波距离传感器),该系统会自动向卡车司机发出警报。但是,这些系统无法将静态物体(即交通标志)与VRU区分开来,并且经常会产生误报警报。因此,在本文中,我们描述了一种主动安全系统,该系统仅依赖于盲点摄像机的输入图像。使用计算机视觉对象检测方法,我们的系统能够有效地检测出具有挑战性的盲点图像中的VRU,并自动警告卡车驾驶员其存在。这样的系统有几个优点:总是可以正确调整,可以很容易地集成到现有的被动式盲点摄像机设置中,不依赖卡车驾驶员的注意力,并且能够将VRU与静态物体区分开。但是,开发这样的安全系统并非易事。这些VRU是多类的(由行人,骑自行车的人,儿童等组成),并且以各种各样的观点和姿势出现。此外,我们需要应对传统盲点相机引起的大视点和镜头失真。最后,我们的特定应用程序固有地对检测精度,吞吐量和等待时间要求非常严格。实际上,要使这种系统以实时处理速度在现实生活中使用,就需要达到极好的精度结果。但是,确保硬实时检测行为与对高检测精度的要求相矛盾。具体而言,物体检测方法学通常需要大量的计算能力才能实现高精度。因此,传统上,当只有有限的硬件可用时,需要在精度和吞吐量之间进行权衡。这对于我们的应用是不可行的:我们的主动安全系统应达到出色的精度结果,同时应在低成本嵌入式硬件上实时运行。我们开发了消除这种折衷的方法。这种贡献的优点是双重的。首先,它允许在现有目标检测器发生故障(由于特定的视点和镜头变形)而导致的具有挑战性的图像中检测VRU。其次,这种方法可以使用高度精确的对象检测方法,否则将非常耗时。因此,我们以实时处理速度实现了卓越的准确性。为了验证这一点,我们获得了一个独特的,有价值的数据集,该数据集是用安装在真实卡车上的真实盲点相机记录的,其中模拟了几种危险的盲点场景。在整个论文中,该数据集的大小和复杂性不断增加。这种最初的方法可以有效地检测和跟踪我们盲点相机图像中的行人。我们证明了这种方法很容易将自己推广到具有类似观点的其他场景。此外,我们提出了对提高检测精度的其他贡献。我们开发了一种方法,该方法可实现多个行人检测器的有效组合,扩展了我们的初始方法以更好地对特定失真进行建模,并开发了一种实现多类检测的方法。最后,我们进一步优化和集成了上述方法,并提出了针对盲区的最终基于视觉的仅主动安全系统。我们得出的结论是,我们最终的主动安全系统设法满足了此类系统在实践中所需的严格的准确性和延迟要求。

著录项

  • 作者

    Van Beeck Kristof;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号