首页> 外文OA文献 >BIM, Big Data and Mashup in Architectural Computing – Experimenting with Digital Technologies in Teaching
【2h】

BIM, Big Data and Mashup in Architectural Computing – Experimenting with Digital Technologies in Teaching

机译:建筑计算中的BIM,大数据和混搭–在教学中尝试数字技术

摘要

The Architectural Computing course at the Department of Architecture, Urbanism and Planning (AUP), supervised by Prof. Andrew Vande Moere and Dr. Stefan Boeykens, introduces students to digital design tools. Architectural Computing I introduces CAD drafting including BIM, rendering, digital documentation, freeform modeling. Architectural Computing II focuses on parametric design, digital fabrication, real-time architecture and web mashups. This abstract illustrates two exercises (BIM and Mashup), pertaining to, respectively, BIM and big data.The BIM exercise consists of 1) a semester-long introduction where students learn to model, annotate and publish digital building models via ArchiCAD (i.e. little BIM) and 2) a group assignment where students collaboratively construct shared building models. In addition, teams appoint model evaluators to perform qualitative and quantitative model analyses using Solibri Model Checker. Teams collaborate with students in engineering who perform energy evaluations and design ventilation systems using Autodesk Revit. Since collaboration requires multiple software tools and interoperability, we highlight OpenBIM concepts. The required team coordination also reflects existing collaborations in building industry. Evaluation consists of 1) project-based feedback providing students with simulation results to optimize designs, 2) process-based feedback where students reflect on the design process and ttools for collaboration and communication, and 3) peer assessment.The Mashup exercise offers students theoretical and practical insight into networked datasets, and the relevance for architectural design. Exercises encompass topics such as open data, Internet of Things and locative technologies. Two approaches have been introduced: 1) bottom-up, where large datasets of geolocated urban features are collaboratively constructed, and a personal online front-end for exploring the data is built (using Google APIs, HTML5, jQuery), and 2) top-down, involving topics such as parametric design, integrating real time sensor data that closely resemble environmental data or movement patterns. By integrating real time sensor data with architectural prototypes (via Grasshopper), students can experience continuously reshaping designs, virtually without borders, yet limited in design through self-defined constraints. In both approaches, evaluation focuses on the emergence of forms and data, creativity and representation.We observed students and design studio teachers regularly need convinced about the relevance of our approaches. The relevance of digital technologies as part of the design process needs to be experienced to appreciate, rather than to be used merely as representational tools. By providing well-structured scenarios, technical infrastructure and accompanying learning materials for assignments, we have achieved better results produced by students, and positive attitude towards these technologies in the design process. In the BIM exercise, we accomplished this by leveraging guiding documents, with open questions (e.g. how will you deal with versioning?) or lists of functions in the team, to stimulate reflection. For the Mashup exercise, we provide code examples that highlight technical pitfalls, or deploy sensors that generate data, to stimulate exploration and emergence rather than error-free programming. We also adjusted communication procedures by gradually implementing video tutorials, and installing a dedicated social network. The latter has proven to be a valuable source of information for students and teaching staff, a platform for learning from each other, and a tool to provide personal feedback.
机译:建筑,城市化与规划系(AUP)的建筑计算课程由Andrew Vande Moere教授和Stefan Boeykens博士指导,向学生介绍了数字设计工具。建筑计算我介绍了CAD绘图,包括BIM,渲染,数字文档,自由格式建模。建筑计算II专注于参数设计,数字制造,实时建筑和Web混搭。该摘要说明了两个练习(BIM和Mashup),分别与BIM和大数据有关.BIM练习包括1)整个学期的介绍,学生可以通过ArchiCAD学习建模,注释和发布数字建筑模型(即BIM)和2)小组作业,学生可以共同构建共享的建筑模型。此外,团队任命模型评估人员使用Solibri Model Checker进行定性和定量模型分析。团队与工程专业的学生合作,他们使用Autodesk Revit进行能源评估和设计通风系统。由于协作需要多种软件工具和互操作性,因此我们重点介绍OpenBIM概念。所需的团队协调还反映了建筑行业中现有的合作。评估包括1)基于项目的反馈,为学生提供仿真结果以优化设计; 2)基于过程的反馈,学生在其中反思设计过程和协作与沟通的工具; 3)同行评估.Mashup练习为学生提供理论依据对网络数据集的实际了解,以及与建筑设计的相关性。练习包括开放数据,物联网和定位技术等主题。引入了两种方法:1)自下而上,协作构建大型地理位置地理特征的大型数据集,并构建用于浏览数据的个人在线前端(使用Google API,HTML5,jQuery),以及2)置顶向下,涉及诸如参数设计之类的主题,集成与环境数据或运动模式极为相似的实时传感器数据。通过将实时传感器数据与建筑原型集成在一起(通过Grasshopper),学生可以体验不断重塑设计的过程,几乎无国界,但由于自定义约束而限制了设计。在这两种方法中,评估都着眼于形式和数据的出现,创造力和代表性。我们观察到学生和设计工作室的教师经常需要确信我们的方法的相关性。需要体验数字技术在设计过程中的相关性,而不是仅将其用作表示工具。通过提供结构合理的方案,技术基础结构以及随附的作业学习材料,我们获得了学生们更好的成绩,并且在设计过程中对这些技术持积极态度。在BIM练习中,我们通过利用指导文件,开放性问题(例如,您将如何处理版本控制?)或团队功能列表来实现这一目标,以激发反思。在Mashup练习中,我们提供了一些代码示例,这些代码示例突出了技术缺陷,或者部署了生成数据的传感器,以刺激探索和出现,而不是无错编程。我们还通过逐步实施视频教程并安装专用的社交网络来调整沟通程序。事实证明,后者是学生和教职员工的宝贵信息来源,彼此学习的平台以及提供个人反馈的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号