首页> 外文OA文献 >A Unifying Platform for Water Resources Management Using Physically-Based Model and Remote Sensing Data
【2h】

A Unifying Platform for Water Resources Management Using Physically-Based Model and Remote Sensing Data

机译:基于物理模型和遥感数据的水资源统一管理平台

摘要

In recent years, physically-based hydrological models provided a robust approach to better understand the cause-effect relationships of effective hydraulic properties in soil hydrology. These have increased the flexibility of studying the behavior of a soil system under various environmental conditions. One disadvantage of physical models is their inability to model the vertical and horizontal heterogeneity of hydraulic properties in a soil system at the regional scale. In order to overcome this limitation, inverse modeling may be used. Near surface soil moisture, which has been collected routinely by remote sensing (RS) platforms, and evapotranspiration, that is also a pivotal key for water balance near the land surface can be used as alternatives for quantifying the effective soil hydraulic parameters through inverse modeling. However, the new approach suffers from not only the scale discrepancy between RS pixel resolution and model grid resolution, but also its application in complex terrains. Furthermore, hydrological models require a number of required input parameters. Hence, this dissertation focuses on developing a methodology for addressing these problems. The field-scale Soil-Water-Atmosphere-Plant model (SWAP) was extended to regional application, and then coupled with a Genetic Algorithm (GA), to operate as the core of the developed decision support system at the regional level. Also, various stochastic processes were developed and applied to the GA for improving the searching ability of optimization algorithms. The computational simulation-optimization approach was tested and evaluated under various synthetic and field validation experiments demonstrating that the methodology provided satisfactory results. In this dissertation, the proposed methodologies analyzed the spatio-temporal root zone soil moisture with RS and in-situ soil moisture data at the multiple scales. Also, these approaches could provide better input parameters for hydro-climatic models, resulting in better understanding of the hydrologic cycle. Thus, a better understanding of water cycle would help us to be better prepared for efficient water resources management, agriculture, and devastating natural disasters in the real world.
机译:近年来,基于物理的水文模型提供了一种可靠的方法,可以更好地了解土壤水文学中有效水力特性的因果关系。这些增加了研究各种环境条件下土壤系统行为的灵活性。物理模型的一个缺点是它们无法在区域尺度上对土壤系统中水力特性的垂直和水平异质性进行建模。为了克服该限制,可以使用逆建模。近地表土壤水分(已通过遥感(RS)平台常规收集)和蒸散量(也是土地表面附近水平衡的关键因素)可以用作通过逆模型定量有效土壤水力参数的替代方法。但是,新方法不仅遭受RS像素分辨率与模型网格分辨率之间的比例差异的困扰,而且还遭受其在复杂地形中的应用的困扰。此外,水文模型需要许多必需的输入参数。因此,本论文着重于开发一种解决这些问题的方法。现场规模的土壤-水-大气-植物模型(SWAP)已扩展到区域应用,然后与遗传算法(GA)结合使用,作为已开发的区域决策支持系统的核心。另外,开发了各种随机过程并将其应用于遗传算法以提高优化算法的搜索能力。在各种合成和现场验证实验下对计算仿真优化方法进行了测试和评估,证明该方法提供了令人满意的结果。本文利用遥感技术和原位土壤水分数据,在多个尺度上分析了时空根区土壤水分。而且,这些方法可以为水文气候模型提供更好的输入参数,从而更好地了解水文循环。因此,更好地了解水循环将有助于我们为有效的水资源管理,农业和现实世界中的毁灭性自然灾害做好更好的准备。

著录项

  • 作者

    Shin Yongchul;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号