首页> 外文OA文献 >An experimental investigation of turbine blade heat transfer and turbine blade trailing edge cooling
【2h】

An experimental investigation of turbine blade heat transfer and turbine blade trailing edge cooling

机译:涡轮叶片传热和叶片后缘冷却的实验研究

摘要

This experimental study contains two points; part1 ? turbine blade heat transferunder low Reynolds number flow conditions, and part 2 ? trailing edge cooling andheat transfer. The effect of unsteady wake and free stream turbulence on heat transferand pressure coefficients of a turbine blade was investigated in low Reynolds numberflows. The experiments were performed on a five blade linear cascade in a low speedwind tunnel. A spoked wheel type wake generator and two different turbulence gridswere employed to generate different levels of the Strouhal number and turbulenceintensity, respectively. The cascade inlet Reynolds number based on blade chordlength was varied from 15,700 to 105,000, and the Strouhal number was varied from 0to 2.96 by changing the rotating wake passing frequency (rod speed) and cascade inletvelocity. A thin foil thermocouple instrumented blade was used to determine thesurface heat transfer coefficient.A liquid crystal technique based on hue value detection was used to measurethe heat transfer coefficient on a trailing edge film cooling model and internal model ofa gas turbine blade. It was also used to determine the film effectiveness on the trailingedge. For the internal model, Reynolds numbers based on the hydraulic diameter ofthe exit slot and exit velocity were 5,000, 10,000, 20,000, and 30,000 andcorresponding coolant ? to ? mainstream velocity ratios were 0.3, 0.6, 1.2, and 1.8 forthe external models, respectively. The experiments were performed at two differentdesigns and each design has several different models such as staggered / inline exit,straight / tapered entrance, and smooth / rib entrance. The compressed air was used incoolant air. A circular turbulence grid was employed to upstream in the wind tunneland square ribs were employed in the inlet chamber to generate turbulence intensityexternally and internally, respectively.
机译:该实验研究包括两点。第1部分 ?低雷诺数流动条件下的涡轮叶片传热,第2部分?后缘冷却和传热。在低雷诺数流下,研究了不稳定的尾流和自由流湍流对涡轮叶片传热和压力系数的影响。实验是在低速风洞中的五叶片线性叶栅上进行的。轮辐式尾流发生器和两个不同的湍流网格分别用于产生不同水平的斯特鲁哈尔数和湍流强度。通过更改旋转尾流通过频率(杆速)和叶栅进气速度,基于叶片弦长的叶栅进气雷诺数从15,700变为105,000,斯特劳哈尔数从0变为2.96。使用薄箔热电偶叶片来确定表面传热系数。基于色相值检测的液晶技术在燃气轮机叶片的后缘膜冷却模型和内部模型上测量传热系数。它也可用于确定后缘的胶片效果。对于内部模型,基于出口缝的水力直径和出口速度的雷诺数分别为5,000、10,000、20,000和30,000,以及相应的冷却剂?至 ?外部模型的主流速度比分别为0.3、0.6、1.2和1.8。实验是在两种不同的设计下进行的,每种设计都有几种不同的模型,例如交错/直列出口,直线/锥形入口和平滑/肋骨入口。压缩空气用作冷却剂空气。在风洞的上游采用圆形湍流格栅,在进气室内采用方肋,分别在外部和内部产生湍流强度。

著录项

  • 作者

    Choi Jungho;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号