首页> 外文OA文献 >Highly stable porous covalent triazine–piperazine linked nanoflower as a feasible adsorbent for flue gas CO2 capture
【2h】

Highly stable porous covalent triazine–piperazine linked nanoflower as a feasible adsorbent for flue gas CO2 capture

机译:高稳定的多孔共价三嗪 - 哌嗪连接纳米灯作为烟气二氧化碳捕获的可行吸附剂

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Here, we report a porous covalent triazine-piperazine linked polymer (CTPP) featuring 3D nanoflower morphology and enhanced capture/removal of CO2, CH4 from air (N2), essential to control greenhouse gas emission and natural gas upgrading. 13C solid-state NMR and FTIR analyses and CHN and X-ray photoelectron spectroscopy (XPS) elemental analyses confirmed the integration of triazine and piperazine components in the network. Scanning electron microscopic (SEM) and transmission electron microscopic (TEM) analyses revealed a relatively uniform particle size of approximately 400 to 500 nm with 3D nanoflower microstructure, which was formed by the self-assembly of interwoven and slight bent nanoflake components. The material exhibited outstanding chemical robustness under acidic and basic medium and high thermal stability up to 773 K. The CTPP possess high surface area (779 m2/g) and single-component gas adsorption study exhibited enhanced CO2 and CH4 uptake of 3.48 mmol/g, 1.09 mmol/g, respectively at 273 K, 1 bar; coupled with high sorption selectivities for CO2/N2 and CH4/N2 of 128 and 17, respectively. The enriched Lewis basicity of the CTPP favors the interaction with CO2, which results in an enhanced CO2 adsorption capacity and high CO2/N2 selectivity. The binary mixture breakthrough study for the flue gas composition at 298 K showed a high CO2/N2 selectivity of 82. CO2 heats of adsorption for the CTPP (34 kJ mol−1) were realized at the borderline between strong physisorption and weak chemisorption (QstCO2; 25−50 kJ mol−1) and low Qst value for N2 (22.09 kJ mol−1), providing the ultimate validation for the high selectivity of CO2 over N2.
机译:在此,我们报告了一种多孔共价三嗪 - 哌嗪链接聚合物(CTPP),具有3D纳米λ形态学和来自空气(N2)的CO 2,CH 4的增强捕获/除去,对控制温室气体排放和天然气升级是必不可少的。 13C固态NMR和FTIR分析和CHN和X射线光电子能谱(XPS)元素分析证实了三嗪和哌嗪组分在网络中的整合。扫描电子显微镜(SEM)和透射电子显微镜(TEM)分析显示,具有3D纳米辊微观结构的相对均匀的粒度约为400至500nm,其通过交织和轻微弯曲的纳米蛋白组分的自组装形成。该材料在酸性和基本培养基下表现出优异的化学稳健性,高达773k的高热稳定性。CTPP具有高表面积(779m2 / g),单组分气体吸附研究表现出增强的CO2和CH4摄取为3.48mmol / g ,1.09 mmol / g,分别为273 k,1 bar;偶联具有128和17的CO 2 / N 2和CH 4 / N 2的高吸附选择性。 CTPP的富集的lewis碱度有利于与CO2的相互作用,这导致增强的CO 2吸附能力和高CO2 / N2选择性。为在298K的烟道气组合物中的二元混合物的突破研究表明吸附82. CO2加热为CTPP高CO 2 / N 2选择性(34千焦摩尔-1)在强的物理吸附和化学吸附弱之间的边界分别实现(QstCO2 ; 25-50 kJ mol-1)和N2(22.09 kJ mol-1)的低QST值,为N2的CO 2的高选择性提供最终验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号