首页> 外文OA文献 >Cooperative Phase Adaptation and Amplitude Amplification of Neuronal Activity in the Vagal Complex: An Interplay Between Microcircuits and Macrocircuits
【2h】

Cooperative Phase Adaptation and Amplitude Amplification of Neuronal Activity in the Vagal Complex: An Interplay Between Microcircuits and Macrocircuits

机译:阴道复合体中神经元活动的合作相适应和振幅扩增:微电路与宏电路之间的相互作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Clusters of neurons can communicate with others through the cross-frequency coupling mechanism of oscillatory synchrony. We addressed the hypothesis that neuronal networks at various levels from micro- to macrocircuits implement this communication strategy. An abundance of local recurrent axons of vagal complex (VC) cells establish dense local microcircuits and seem to generate high-frequency noise-causing stochastic resonance (reverberation) and coherence resonance, even in in vitro slice preparations. These phenomena were observed in vitro as the generation of episodes of higher-frequency noise after an external stimulation and as stimulus-induced or spontaneous high-amplitude signals (postsynaptic activities). The in vitro microcircuit networks rarely sustained the stochastic resonance and coherence resonance cooperatively; however, in vivo networks involving additional intrabulbar mesocircuits and large-scale macrocircuits were able to sustain them cooperatively. This gave rise to large-scale oscillatory synchrony leading to robust power and coherence of signals with high amplitudes, reaching several millivolts in amplitude from a noise level of ~100 microV through cardiorespiratory frequency coupling. A regenerative mechanism of neuronal circuits might work for the generation of large-scale oscillatory synchrony. The amplitude and phase of neuronal activity in vivo may interact cooperatively to give rise to varying degrees of power and coherence of robust rhythmic activity for distinct physiological roles. The cooperative interaction between phase adaptation and amplitude amplification of neuronal activity may provide diverse nervous systems with both robustness and resilience.
机译:神经元集群可以通过振荡同步的交叉频率联接机构与其他人进行通信。我们讨论的假设,各级从微观到macrocircuits神经网络实现这种通信战略。迷走神经复合体(VC)细胞的局部复发的轴突的丰度建立密集本地微电路,似乎产生高频噪声引起随机共振(混响)和相干共振,即使在体外片制剂。在体外观察到这些现象,较高频率的噪声的发作的产生的外部刺激后和作为刺激诱导的或自发的高幅度信号(突触后活动)。体外微网络很少遭受的随机共振和相干共振协作;然而,在体内涉及额外intrabulbar mesocircuits和大规模macrocircuits网络是能够维持它们协作。这引起了大规模的振荡同步,导致强健的功率和具有高振幅的信号的一致性,从通过频率心肺耦合〜100 microV的噪声水平达到在振幅几毫伏。神经回路的再生机制可能适用于大型振荡同步的产生。振幅和体内神经元活性的相位可以协同相互作用以引起不同程度的功率和健壮节律活动的相干性的为独特的生理作用。相适应和神经元活动的振幅放大之间的合作相互作用可以提供与两个刚性和弹性多样神经系统。

著录项

  • 作者

    Yoshinori Kawai;

  • 作者单位
  • 年度 2019
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号