首页> 外文OA文献 >Secondary organic aerosol formation in biomass-burning plumes: theoretical analysis of lab studies and ambient plumes
【2h】

Secondary organic aerosol formation in biomass-burning plumes: theoretical analysis of lab studies and ambient plumes

机译:生物质燃烧烟羽中的二次有机气溶胶形成:实验室研究和环境烟羽的理论分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Secondary organic aerosol (SOA) has been shown to form in biomass-burningemissions in laboratory and field studies. However, there is significantvariability among studies in mass enhancement, which could be due todifferences in fuels, fire conditions, dilution, and/or limitations oflaboratory experiments and observations. This study focuses on understandingprocesses affecting biomass-burning SOA formation in laboratory smog-chamberexperiments and in ambient plumes. Vapor wall losses have been demonstratedto be an important factor that can suppress SOA formation in laboratorystudies of traditional SOA precursors; however, impacts of vapor wall losseson biomass-burning SOA have not yet been investigated. We use an aerosol-microphysical model that includes representations of volatility and oxidationchemistry to estimate the influence of vapor wall loss on SOA formationobserved in the FLAME III smog-chamber studies. Our simulations withbase-case assumptions for chemistry and wall loss predict a mean OA massenhancement (the ratio of final to initial OA mass, corrected forparticle-phase wall losses) of 1.8 across all experiments when vapor walllosses are modeled, roughly matching the mean observed enhancement duringFLAME III. The mean OA enhancement increases to over 3 when vapor walllosses are turned off, implying that vapor wall losses reduce the apparentSOA formation. We find that this decrease in the apparent SOA formation dueto vapor wall losses is robust across the ranges of uncertainties in the keymodel assumptions for wall-loss and mass-transfer coefficients and chemicalmechanisms.We then apply similar assumptions regarding SOA formation chemistry andphysics to smoke emitted into the atmosphere. In ambient plumes, the plumedilution rate impacts the organic partitioning between the gas and particlephases, which may impact the potential for SOA to form as well as the rateof SOA formation. We add Gaussian dispersion to our aerosol-microphysicalmodel to estimate how SOA formation may vary under different ambient-plumeconditions (e.g., fire size, emission mass flux, atmospheric stability).Smoke from small fires, such as typical prescribed burns, dilutes rapidly,which drives evaporation of organic vapor from the particle phase, leadingto more effective SOA formation. Emissions from large fires, such as intensewildfires, dilute slowly, suppressing OA evaporation and subsequent SOAformation in the near field. We also demonstrate that different approachesto the calculation of OA enhancement in ambient plumes can lead to differentconclusions regarding SOA formation. OA mass enhancement ratios of around 1calculated using an inert tracer, such as black carbon or CO, havetraditionally been interpreted as exhibiting little or no SOA formation;however, we show that SOA formation may have greatly contributed to the massin these plumes.In comparison of laboratory and plume results, the possible inconsistency ofOA enhancement between them could be in part attributed to the effect ofchamber walls and plume dilution. Our results highlight that laboratory andfield experiments that focus on the fuel and fire conditions also need toconsider the effects of plume dilution or vapor losses to walls.
机译:在实验室和现场研究中,已证明次级有机气溶胶(SOA)在生物质燃烧排放中形成。但是,在质量增强研究之间存在显着差异,这可能是由于燃料差异,着火条件,稀释和/或实验室实验和观察结果的局限性所致。这项研究的重点是了解在实验室烟雾试验和环境羽流中影响生物质燃烧SOA形成的过程。在传统的SOA前体的实验室研究中,蒸汽壁损失已被证明是可以抑制SOA形成的重要因素。但是,尚未研究蒸气壁损失对燃烧生物质的SOA的影响。我们使用包含挥发性和氧化化学表示形式的气溶胶微物理模型来估计蒸气壁损失对FLAME III烟雾试验研究中观察到的SOA形成的影响。我们的模拟基于化学和壁损耗的基本假设,预测在模拟蒸气壁损耗的所有实验中,平均OA质量增强(最终OA重量与初始OA质量之比,校正的颗粒相壁损耗)为1.8,与观察到的平均增强值大致匹配在第三场关闭蒸气壁损耗后,平均OA增强值增加到3以上,这意味着蒸气壁损失会减少表观SOA的形成。我们发现由于蒸汽壁损失而导致的表观SOA形成的减少在壁损耗和传质系数以及化学机理的关键模型假设的不确定性范围内是稳健的,然后将关于SOA形成化学和物理的类似假设应用于烟雾排放进入大气。在环境羽流中,羽化稀释速率会影响气相和颗粒相之间的有机分配,这可能会影响SOA形成的可能性以及SOA的形成速率。我们在气溶胶微物理模型中增加了高斯分散度,以估算在不同的环境-烟雾条件下(例如,火的大小,排放质量通量,大气稳定性)SOA的形成如何变化。驱动颗粒相中有机蒸气的蒸发,从而更有效地形成SOA。大火(例如强烈的野火)的排放缓慢地稀释,从而抑制了OA蒸发以及随后在近场中的SOA形成。我们还证明,计算环境羽流中OA增强的不同方法可能导致关于SOA形成的不同结论。传统上,使用惰性示踪剂(例如黑碳或CO)计算得出的OA质量增强比约为1,或者说SOA形成很少或根本没有SOA形成;但是,我们表明SOA形成可能对这些羽状物的质量起了很大作用。实验室和羽流的结果,它们之间OA增强的可能不一致可能部分归因于腔室壁和羽流稀释的影响。我们的结果表明,着重于燃料和着火条件的实验室和野外实验也需要考虑羽流稀释或蒸气向壁面流失的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号