首页> 外文OA文献 >Effect of rolling on fatigue crack growth rate of Wire and Arc Additive Manufacture (WAAM) processed Titanium
【2h】

Effect of rolling on fatigue crack growth rate of Wire and Arc Additive Manufacture (WAAM) processed Titanium

机译:轧制对钨丝和电弧增材制造(WAAM)工艺钛的疲劳裂纹扩展速率的影响

摘要

Titanium (Ti) alloys have been commonly used in the aerospace industry, notonly because they have a high strength-to-weight ratio (comparing to the steels)but also their satisfactory corrosion resistance. Furthermore, they can beassembled with the carbon fibre composite parts. However, conventionalmanufacturing methods cause high material scrap rate and require lots ofmachining to obtain the final shape and size, which increases both themanufacturing time and cost. In order to improve the efficiency and reduce thecost of Ti parts, Additive Manufacturing (AM) has been developed.Rolled Wire and Arc Additive Manufacturing (rolled WAAM) is one of the AMprocesses. The main characteristics of this technology is the reduced β grainsize to refine the alloy's microstructure. Both the ultimate tensile strength andyield strength of Ti alloy made by rolled WAAM are at least 10% higher thantraditional wrought Ti.This project is to investigate the fatigue crack growth rates of the Ti-6Al-4V builtby rolled WAAM process in both the longitudinal and transverse orientations tostudy the effect of rolling on fatigue crack growth rate of WAAM processed Ti.The project was carried out by testing the fatigue crack growth rates for 4compact tension specimens. The test results of different orientations werecompared with each other, and scatters in fatigue life and fatigue crack growthrate were found. Fatigue crack growth rate is lower in the longitudinalspecimens. The results are also compared with those of the unrolled WAAMspecimens tested in a previous project. It was found that rolling can significantlyimprove the fatigue crack growth behaviour in WAAM processed Ti, and canreduce the difference between the two orientations, i.e. achieving betterisotropic material properties. Recorded scatters may be caused by the processinduced residual stresses, error in measurement, and the test machine loadrange being much higher than the applied loads. More specimens can be testedto validate above observations further.
机译:钛(Ti)合金已广泛用于航空航天工业,不仅因为它们具有高的强度重量比(与钢相比),而且还具有令人满意的耐腐蚀性。此外,它们可以与碳纤维复合材料部件组装在一起。然而,传统的制造方法导致高的材料报废率,并且需要大量的加工以获得最终的形状和尺寸,这增加了制造时间和成本。为了提高效率并降低Ti零件的成本,已经开发了增材制造(AM)。滚丝和电弧增材制造(rolled WAAM)是AM工艺之一。这项技术的主要特点是减小了β晶粒,以改善合金的微观结构。 WAAM轧制的Ti合金的极限抗拉强度和屈服强度都比传统锻制Ti高至少10%。该项目旨在研究WAAM轧制Ti-6Al-4V在纵向和纵向的疲劳裂纹扩展率横向取向以研究轧制对WAAM加工Ti的疲劳裂纹扩展速率的影响。该项目通过测试4个紧凑拉伸试样的疲劳裂纹扩展速率来进行。将不同方向的测试结果进行了比较,发现疲劳寿命和疲劳裂纹扩展率有所分散。纵向试样的疲劳裂纹扩展率较低。还将结果与先前项目中测试的展开WAAM样本的结果进行比较。已经发现,轧制可以显着改善WAAM处理的Ti中的疲劳裂纹扩展行为,并且可以减小两个取向之间的差异,即获得更好的各向同性材料性能。记录的散布可能是由过程引起的残余应力,测量误差以及测试机器的负载范围远高于施加的负载引起的。可以测试更多的样本以进一步验证上述观察结果。

著录项

  • 作者

    Qiu Xundong;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号