首页> 美国政府科技报告 >Effect of CuO Nanoparticle Concentration on R134a/Lubricant Pool Boiling Heat Transfer with Extensive Analysis.
【24h】

Effect of CuO Nanoparticle Concentration on R134a/Lubricant Pool Boiling Heat Transfer with Extensive Analysis.

机译:CuO纳米粒子浓度对R134a /润滑池沸腾换热的影响及广泛分析。

获取原文

摘要

This paper quantifies the influence of copper (II) oxide (CuO) nanoparticle concentration on the boiling performance of R134a/polyolester mixtures on a roughened, horizontal flat surface. Nanofluids are liquids that contain dispersed nano-size particles. Two lubricant based nanofluids (nanolubricants) were made with a synthetic polyolester and 30 nm diameter CuO particles to a 4 % and a 2 % volume fraction, respectively. As reported in a previous study for the 4 % volume fraction nanolubricant, a 0.5 % nanolubricant mass fraction with R134a resulted in a heat transfer enhancement relative to the heat transfer of pure R134a/polyolester (99.5/0.5) of between 50 % and 275 %. The same study had shown that increasing the mass fraction of the 4 % volume fraction nanolubricant resulted in smaller, but significant, boiling heat transfer enhancements. The present study shows that use of a nanolubricant with half the concentration of CuO nanoparticles (2 % by volume) resulted in either no improvement or boiling heat transfer degradations with respect to the R134a/polyolester mixtures without nanoparticles. Consequently, significant refrigerant/lubricant boiling heat transfer enhancements are possible with nanoparticles; however, the nanoparticle concentration is an important determining factor. Further research with nanolubricants and refrigerants are required to establish a fundamental understanding of the mechanisms that control nanofluid heat transfer.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号