首页> 美国政府科技报告 >Seismic Behavior of Circular Reinforced Concrete Bridge Columns Under Combined Loading Including Torsion. Final
【24h】

Seismic Behavior of Circular Reinforced Concrete Bridge Columns Under Combined Loading Including Torsion. Final

机译:圆形钢筋混凝土桥梁在扭转荷载作用下的抗震性能

获取原文

摘要

Reinforced concrete (RC) columns of skewed and curved bridges with unequal spans and column heights can be subjected to combined loading including axial, flexure, shear, and torsion loads during earthquakes. The combination of axial loads, shear force, and flexural and torsional moments can result in complex failure modes of RC bridge columns. This study carried out experimental and analytical studies to investigate the seismic performance of circular RC columns under combined loading including torsion. The main variables considered here were (i) the ratio of torsion-to-bending moment (T/M), (ii) the ratio of bending moment-to-shear (M/V) or shear span (H/D), and (iii) the level of detailing for high and moderate seismicity (high or low spiral ratio). In particular, the effects of the spiral reinforcement ratio and shear span on strength and ductility of circular RC columns under combined loading were addressed. In addition, the effects of torsional loading on the bending moment-curvature, ductility, and energy dissipation characteristics were also considered. The analytical investigation examined the development of existing models for flexure and pure torsion. Interaction diagrams between bending, shear and torsional loads were established from a semi-empirical approach. A damage-based design approach for circular RC columns under combined loads was proposed by decoupling damage index models for flexure and torsion. Experimental and analytical results showed that the progression of damage was amplified by an increase in torsional moment. An increase in the transverse spiral reinforcement ratio delayed the progression of damage and changed the torsional-dominated behavior to flexural-dominated behavior under combined flexural and torsional moments.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号