首页> 美国政府科技报告 >Preliminary Results of an Experimental Investigation of the Qu Superconducting Heat Pipe
【24h】

Preliminary Results of an Experimental Investigation of the Qu Superconducting Heat Pipe

机译:衢超导热管实验研究初报

获取原文

摘要

This note on preliminary results of our evaluation of the so-called Qu Tube is prompted in part by recent concerns expressed to the authors by some researchers regarding the performance characteristics of the superconducting, solid-state heat pipe as described in the patents, or on the company's websites. Briefly, the company's claims include: a new type of heat transfer mechanism that is a form of solid state thermal superconductivity, which results in an effective thermal conductivity of the order of tens of thousands of times that of an equivalent solid silver bar, or, tens to hundreds of times that of liquid - vapor heat pipes. The company's website also refers to tests conducted by Stanford Research Institute that substantiate these claims, but the report is apparently not publicly available. We are conducting an investigation of the Qu Tube under a NASA Grant, and in general find that these claims have merit, but our study is not yet complete. We present some of our preliminary results in part to show that it would not be imprudent to conduct such studies, especially for possible future applications requiring exceptional thermal management performance capabilities. Working with HiTek Services, we originally acquired several Qu Tubes, including 17' long, 5/16' diameter copper tubes, one that is 7 7/8' long, 3/16' diameter, and one that is 4' long, 1' diameter. We subjected the smaller tubes to various exploratory tests, including a transient test with electrical band heaters, boiling water tests, and a series of steady state tests with electrical band heaters heating one end with free convective cooling along the remainder of the length. All results indicate a very high thermal conductivity, but the length of these tubes limited our ability to obtain accurate data on temperature gradients, necessary to determine the effective thermal conductivity. We then acquired nine Qu Tubes that are 10' long, 5/16' diameter, and we have recently conducted initial tests, which further support the claims of exceptional thermal conductivity.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号