首页> 美国政府科技报告 >Comparative transduction mechanisms of hair cells in the bullfrog uticulus. 2: Sensitivity and response dynamics to hair bundle displacement
【24h】

Comparative transduction mechanisms of hair cells in the bullfrog uticulus. 2: Sensitivity and response dynamics to hair bundle displacement

机译:牛蛙细胞毛细胞的比较转导机制。 2:对发束位移的敏感性和响应动力学

获取原文

摘要

The present study was motivated by an interest in seeing whether hair cell types in the bullfrog utriculus might differ in their voltage responses to hair bundle displacement. Particular interest was in assessing the contributions of two factors to the responses of utricular hair cells. First, interest in examining the effect of hair bundle morphology on the sensitivity of hair cells to natural stimulation was motivated by the observation that vestibular hair cells, unlike many auditory hair cells, are not free-standing but rather linked to an accessory cupular or otolithic membrane via the tip of their kinocilium. Interest also laid in examining the contribution, if any, of adaptation to the response properties of utricular hair cells. Hair cells in auditory and vibratory inner ear endorgans adapt to maintained displacements of their hair bundles, sharply limiting their low frequency sensitivity. This adaptation is mediated by a shift in the displacement-response curve (DRC) of the hair cell along the displacement axis. Observations suggest that the adaptation process occurs within the hair bundle and precedes mechanoelectric transduction. Recent observations of time-dependent changes in hair bundle stiffness are consistent with this conclusion. Adaptation would be expected to be most useful in inner ear endorgans in which hair cells are subject to large static displacements that could potentially saturate their instantaneous response and compromise their sensitivity to high frequency stimulation. The adaptation process also permits hair cells to maintain their sensory hair bundle in the most sensitive portion of their DRC. In vestibular otolith organs in which static sensitivity is desirable, any adaptation process in the hair cells may be undesirable. The rate and extent of the decline of the voltage responses was measured of utricular hair cells to step and sinusoidal hair bundle displacements. Then for similar resting potentials and response amplitudes, the voltage responses of individual hair cells were compared to both hair bundle displacement and intracellular current.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号