首页> 美国政府科技报告 >Investigation to Improve Quality Evaluations of Primers and Propellant for 20mm Munitions
【24h】

Investigation to Improve Quality Evaluations of Primers and Propellant for 20mm Munitions

机译:提高20mm弹药底漆和推进剂质量评价的研究

获取原文

摘要

To reduce the frequency of electrically initiated, 20mm munition hangfires (delayed ignitions), a joint Army/NASA investigation was conducted to recommend quality evaluation improvements for acceptance of both primers and gun propellant. This effort focused only on evaluating ignition and combustion performance as potential causes of hangfires: poor electrical initiation of the primer, low output performance of the primer, low ignition sensitivity of the gun propellant, and the effects of cold temperature. The goal was to determine the "best" of the Army and NASA test methods to assess the functional performance of primers and gun propellants. The approach was to evaluate the performance of both high-quality and deliberately defective primers to challenge the sensitivity of test methods. In addition, the ignition sensitivity of different manufacturing batches of gun propellants was evaluated. The results of the investigation revealed that improvements can be made in functional evaluations that can assist in identifying and reducing ignition and performance variations. The "best" functional evaluation of primers and propellant is achieved through a combination of both Army and NASA test methods. Incorporating the recommendations offered in this report may provide for considerable savings in reducing the number of cartridge firings, while significantly lowering the rejection rate of primer, propellant and cartridge lots. The most probable causes for ignition and combustion-related hangfires were the lack of calcium silicide in the primer mix, a low output performance of primers, and finally, poor ignition sensitivity of gun propellant. Cold temperatures further reduce propellant ignition sensitivity, as well as reducing burn rate and chamber pressures.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号