首页> 美国政府科技报告 >Characterization of Clouds and the Anisotropy of Emitted and Reflected Radiances for the Purpose of Obtaining the Radiative Heating of the Atmosphere
【24h】

Characterization of Clouds and the Anisotropy of Emitted and Reflected Radiances for the Purpose of Obtaining the Radiative Heating of the Atmosphere

机译:为了获得大气辐射加热,云的特征和发射和反射辐射的各向异性

获取原文

摘要

The goal of the work supported through this grant was to assess the validity of the assumptions underlying the CERES Strategy for determining radiative fluxes. Specifically, the work focused on the determination of scene type and the use of anisotropic factors to derive radiative fluxes from observed broadband radiances. The work revealed a dependence of the anisotropy of reflected and emitted broadband radiances on the spatial resolution of the observations that had been overlooked in the formulation of the CERES strategy. This dependence on spatial resolution coupled with errors in scene identification led to view zenith angle dependent biases in the ERBE derived radiative fluxes. Scene identification will be greatly improved in CERES thereby alleviating somewhat the biases arising from the dependence of the anisotropy of the radiances on spatial resolution. Attention was then focused on the validity of plane-parallel radiative transfer theory which is relied on to characterize the scene types viewed by the CERES scanner. Again, viewing geometry dependent biases were found even for single-layered, overcast cloud systems. Such systems are taken to be the closest examples of plane-parallel clouds. At least some of the departures from plane-parallel behavior were evidently due to relatively small bumps on the tops of extensive stratus layers. The bumps cannot be resolved in the imagery that will be used to characterize the scenes viewed by the CERES scanner. As part of this investigation, the ice sheets of Greenland and Antarctica were shown to provide radiometrically stable targets for determining the visible and near infrared calibrations of radiometers. These targets were used to calibrate the reflected sunlight at visible wavelengths used in this study. Finally, the limitations of plane-parallel theory notwithstanding, the common practice of ignoring fractional cloud cover within the fields of view of imaging radiometers was shown to lead to biases in the retrieved cloud properties. The development of retrievals for pixel-scale cloud cover fraction is an attempt to reduce such bases. Work on these retrievals continues.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号