首页> 美国政府科技报告 >First steps in eukaryogenesis: Physical phenomena in the origin and evolution of chromosome structure
【24h】

First steps in eukaryogenesis: Physical phenomena in the origin and evolution of chromosome structure

机译:真核生成的第一步:染色体结构起源和进化中的物理现象

获取原文

摘要

Our present understanding of the origin and evolution of chromosomes differs considerably from current understanding of the origin and evolution of the cell itself. Chromosome origins have been less prominent in research, as the emphasis has not shifted so far appreciably from the phenomenon of primeval nucleic acid encapsulation to that of the origin of gene organization, expression, and regulation. In this work we discuss some reasons why preliminary steps in this direction are being taken. We have been led to examine properties that have contributed to raise the ancestral prokaryotic programmes to a level where we can appreciate in eukaryotes a clear departure from earlier themes in the evolution of cell from the last common ancestor. We shift our point of view from evolution of cell morphology to the point of view of the genes. In particular we focus attention on possible physical bases for the way transmission of information has evolved in eukaryotes, namely, the inactivation of whole chromosomes. The special case of the inactivation of the X chromosome in mammals is discussed, paying particular attention to the physical process of the spread of X inactivation in monotremes (platypus and echidna). When experimental data is unavailable some theoretical analysis is possible based on the idea that in certain cases collective phenomena in genetics, rather than chemical detail, are better correlates of complex chemical processes. (author). 65 refs. (Atomindex citation 26:078039)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号