首页> 美国政府科技报告 >Numerical Simulation of Bolide Entry with Ground Footprint Prediction.
【24h】

Numerical Simulation of Bolide Entry with Ground Footprint Prediction.

机译:基于地基足迹预测的Bolide入口数值模拟。

获取原文

摘要

As they decelerate through the atmosphere, meteors deposit mass, momentum and energy into the surrounding air at tremendous rates. Trauma from the entry of such bolides produces strong blast waves that can propagate hundreds of kilometers and cause substantial terrestrial damage even when no ground impact occurs. We present a new simulation technique for airburst blast prediction using a fully-conservative, Cartesian mesh, finite-volume solver and investigate the ability of this method to model far- field propagation over hundreds of kilometers. The work develops mathematical models for the deposition of mass, momentum and energy into the atmosphere and presents verification and validation through canonical problems and the comparison of surface overpressures, and blast arrival times with actual results in the literature for known bolides. The discussion also examines the effects of various approximations to the physics of bolide entry that can substantially decrease the computational expense of these simulations. We present parametric studies to quantify the influence of entry-angle, burst-height and other parameters on the ground footprint of the airburst, and these values are related to predictions from analytic and handbook-methods.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号