首页> 美国政府科技报告 >Wind Turbine Blade Flow Fields and Prospects for Active Aerodynamic Control:Conference paper
【24h】

Wind Turbine Blade Flow Fields and Prospects for Active Aerodynamic Control:Conference paper

机译:风力涡轮机叶片流场和主动空气动力控制的前景:会议论文

获取原文

摘要

As wind turbines continue to grow larger, problems associated with adverse aerodynamic loads will grow more critical. Thus, the wind energy technical community has begun to seriously consider the potential of aerodynamic control methodologies for mitigating adverse aerodynamic loading. Spatial and temporal attributes of the structures and processes present in these flow fields hold important implications for active aerodynamic control methodologies currently being contemplated for wind turbine applications. The current work uses complementary experimental and computational methodologies, to isolate and characterize key attributes of blade flow fields associated with axisymmetric and yawed turbine operation. During axisymmetric operation, a highly three-dimensional, shear layer dominated flow field yields rotational augmentation of both mean and standard deviation levels of aerodynamic forces. Under yawed operating conditions, pseudo-sinusoidal inflow angle oscillations elicit dynamic stall, which significantly intensifies aerodynamic load production. Both rotationally augmented and dynamically stalled flows possess attributes likely to pose central challenges for turbine flow control. Whether active control of turbine aerodynamics can help alleviate adverse aerodynamic loads will depend on comprehension and command of the issues documented herein.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号