首页> 美国政府科技报告 >Aerogels, emulsions, and composites: Controlling structure with organic sol-gel chemistry.
【24h】

Aerogels, emulsions, and composites: Controlling structure with organic sol-gel chemistry.

机译:气凝胶,乳液和复合材料:采用有机溶胶 - 凝胶化学控制结构。

获取原文

摘要

The sol-gel polymerization of resorcinol with formaldehyde is a proven synthetic route for the formation of organic aerogels. These materials can also be pyrolyzed in an inert atmosphere to form vitreous carbon aerogels. Both resorcinol-formaldehyde and carbon aerogels are characterized by high porosity (50--98%), ultrafine cell/pore sizes (< 100 mn), high surface area (400--1000 m(sup 2)/g), and a solid matrix composed of interconnected colloidal-like particles or fibrous chains with characteristic diameters of 10 nm. While this nanostructure and the low Z (atomic number) composition are responsible for the unique optical, thermal, acoustic, mechanical, and electrical properties of organic aerogels, there are certain applications in which a larger scale structure is also desired in combination with the unique features of the aerogel. In order to achieve this goal, we have been emulsifying our resorcinol-formaldehyde sols to form foams which retain the aerogel framework but have some cells/pores as large as 2 (mu)m. In another approach, we have infused an emulsion-derived polystryene foam with a resorcinol-formaldehyde sol to form a new composite foam. This paper addresses the chemistry-structure-property relationships of organic aerogels, their emulsion-derived derivatives, and composite foams.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号