首页> 美国政府科技报告 >Computational Study of Low-Temperature Catalytic C-C Bond Activation of Alkanes for Portable Power.
【24h】

Computational Study of Low-Temperature Catalytic C-C Bond Activation of Alkanes for Portable Power.

机译:用于便携式电源的烷烃低温催化C-C键活化的计算研究。

获取原文

摘要

The development of a room temperature (<50 C) fuel cell that would use a generally available fuel such as JP8 would be most valuable. However there are no known catalysts that can selectively activate the CC bonds of such fuels at such temperature. The goal of this project was to investigate whether it is plausible to develop such catalysts. To do this we used validated first-principles (quantum mechanics) based simulations to investigate the barriers for alkyl carbon-carbon cleavage for two prototypical systems: A metal alloy catalyst and an organometallic cluster catalyst. That might serve as an anode for electrochemical power generation. For the metal alloy catalyst we used a top-down approach where we determined the bond energies to the alloy catalyst to various fuel fragments necessary to achieve room temperature decomposition of butane and oxidation to CO2. For organometallic cluster catalyst we used a bottom-up strategy, determining specific metals, ligand compositions, solvents and operating conditions to evaluate which conditions could lead to reasonable rates at room temperature.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号