首页> 美国政府科技报告 >Scheduling Threads for Low Space Requirement and Good Locality
【24h】

Scheduling Threads for Low Space Requirement and Good Locality

机译:调度线程以满足低空间要求和良好的局部性

获取原文

摘要

The running time and memory requirement of a parallel program with dynamic, lightweight threads depends heavily on the underlying thread scheduler. In this paper, we present a simple, asynchronous, space-efficient scheduling algorithm for shared memory machines that combines the low scheduling overheads and good locality of work stealing with the low space requirements of depth-first schedulers. For a nested-parallel program with depth D and serial space requirement S(sub 1), we show that the expected space requirement is S(sub 1) + O (K . p . D) on p processors. Here, K is a user-adjustable runtime parameter, which provides a trade-off between running time and space requirement. Our algorithm achieves good locality and low scheduling overheads by automatically increasing the granularity of the work scheduled on each processor. We have implemented the new scheduling algorithm in the context of a native, user-level implementation of Posix standard threads or Pthreads, and evaluated its performance using a set of C-based benchmarks that have dynamic or irregular parallelism. We compare the performance of our scheduler with that of two previous schedulers: the thread library's original scheduler (which uses a FIFO queue), and a provably space-efficient depth-first scheduler. At a fine thread granularity, our scheduler outperforms both these previous schedulers, but requires marginally more memory than the depth-first scheduler. We also present simulation results on synthetic benchmarks to compare our scheduler with space- efficient versions of both a work-stealing scheduler and a depth-first scheduler. The results indicate that unlike these previous approaches, the new algorithm covers a range of scheduling granularities and space requirements, and allows the user to trade the space requirement of a program with the scheduling granularity.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号