首页> 美国政府科技报告 >Effect of Plain-Weaving on the Mechanical Properties of Warp and Weft P-Phenylene Terephthalamide (PPTA) Fibers/Yarns.
【24h】

Effect of Plain-Weaving on the Mechanical Properties of Warp and Weft P-Phenylene Terephthalamide (PPTA) Fibers/Yarns.

机译:平纹织造对经向和纬向对苯二甲酰对苯二胺(ppTa)纤维/纱线力学性能的影响。

获取原文

摘要

Coarse-grained molecular statics/dynamics methods are first used to investigate degradation in the PPTA fiber/yarn tensile strength, as a result of the prior compressive or tensile loading. PPTA fibers/yarns experience this type of loading in the course of a plain-weaving process, the process which is used in the fabrication of ballistic fabric and flexible armor. The more common all-atom molecular simulations were not used to assess strength degradation for two reasons: (a) the size of the associated computational domain rendering reasonable run-times would be too small and (b) modeling of the mechanical response of multi-fibril PPTA fibers could not be carried out (again due to the limited size of the computational domain). However, all-atom simulations were used to (a) define the coarse-grained particles (referred to as beads ) and (b) parameterize various components of the bead/bead force-field functions. In the second portion of the work, a simplified finite-element analysis of the plain-weaving process is carried out in order to assess the extent of tensile-strength degradation in warp and weft yarns during the weaving process. In this analysis, a new material model is used for the PPTA fibers/yarns. Specifically, PPTA is considered to be a linearly elastic, transversely isotropic material with degradable longitudinal- tensile strength and the longitudinal Young s modulus. Equations governing damage and strength/stiffness degradation in this material model are derived and parameterized using the coarse-grained simulation results. Lastly, the finite-element results are compared with their experimental counterparts, yielding a decent agreement.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号