首页> 美国政府科技报告 >Identification and Optimization of Classifier Genes from Multi-Class Earthworm Microarray Dataset
【24h】

Identification and Optimization of Classifier Genes from Multi-Class Earthworm Microarray Dataset

机译:多类蚯蚓微阵列数据集分类器基因的鉴定与优化

获取原文

摘要

Monitoring, assessment and prediction of environmental risks that chemicals pose demand rapid and accurate diagnostic assays. A variety of toxicological effects have been associated with explosive compounds TNT and RDX. One important goal of microarray experiments is to discover novel biomarkers for toxicity evaluation. We have developed an earthworm microarray containing 15,208 unique oligo probes and have used it to profile gene expression in 248 earthworms exposed to TNT, RDX or neither. We assembled a new machine learning pipeline consisting of several well-established feature filtering/selection and classification techniques to analyze the 248-array dataset in order to construct classifier models that can separate earthworm samples into three groups: control, TNT-treated, and RDX-treated. First, a total of 869 genes differentially expressed in response to TNT or RDX exposure were identified using a univariate statistical algorithm of class comparison. Then, decision tree-based algorithms were applied to select a subset of 354 classifier genes, which were ranked by their overall weight of significance. A multiclass support vector machine (MC-SVM) method and an unsupervised K-mean clustering method were applied to independently refine the classifier, producing a smaller subset of 39 and 30 classifier genes, separately, with 11 common genes being potential biomarkers. The combined 58 genes were considered the refined subset and used to build MC-SVM and clustering models with classification accuracy of 83.5% and 56.9%, respectively. This study demonstrates that the machine learning approach can be used to identify and optimize a small subset of classifier/biomarker genes from high dimensional datasets and generate classification models of acceptable precision for multiple classes.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号