首页> 美国政府科技报告 >Modeling Regional-Scale Sediment Transport and Medium-Term Morphology Change at a Dual-Inlet System Examined with the Coastal Modeling System (CMS): A Case Study at Johns Pass and Blind Pass, West-Central Florida.
【24h】

Modeling Regional-Scale Sediment Transport and Medium-Term Morphology Change at a Dual-Inlet System Examined with the Coastal Modeling System (CMS): A Case Study at Johns Pass and Blind Pass, West-Central Florida.

机译:用沿海建模系统(Cms)检验的双入口系统的区域尺度沉积物运移和中期形态变化模拟:佛罗里达中西部约翰斯山口和盲通道的案例研究。

获取原文

摘要

The Coastal Modeling System (CMS), developed by the US Army Engineer Research and Development Center's (ERDC) Coastal Inlets Research Program (CIRP), is applied to model morphology change at a dual-inlet system, the Johns Pass and Blind Pass system in West-Central Florida. The CMS combines computation of current, wave, and sediment transport, leading to the prediction of morphology change at tidal inlets and the surrounding beaches. Medium-term CMS runs, with simulated times of 1.2 to 1.6 years, were completed and compared with extensive field data. Stronger tidal flow through the dominating Johns Pass and weaker flow through the secondary Blind Pass were calculated, indicating that the model reproduced an essential aspect of this interactive two-inlet system. The complicated wave refraction and breaking over the ebb tidal deltas and along the adjacent shorelines were accurately modeled, leading to a realistic representation of the wave-current interaction. Wave-breaking induced elevated sediment suspension and transport were described by the model. The predicted morphology change agreed well with field data. The CMS captured several key spatial trends of morphology change, e.g., erosion along the downdrift beach and accretion at the attachment point. The computed 32,000 m3/yr sedimentation volume in the dredge pit at the updrift side of Blind Pass matched the measured value of 35,000 m3/yr with a similar spatial distribution pattern suggesting that the calculated net longshore sediment transport rates are accurate. The computed sedimentation rate of 60,000 m3/yr at a designed dredge pit on Johns Pass ebb-delta agrees with the generally accepted gross longshore transport rate. Rapid and large morphology change in response to high wave-energy events is predicted and is consistent with field observations.

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号