首页> 美国政府科技报告 >Theory for the Development of Neuron Selectivity: Orientation Specificity and Binocular Interaction in Visual Cortex
【24h】

Theory for the Development of Neuron Selectivity: Orientation Specificity and Binocular Interaction in Visual Cortex

机译:神经元选择性发展理论:视觉皮层中的方向特异性和双眼相互作用

获取原文

摘要

Development of stimulus selectivity in primary sensory cortex of higher vertebrates is considered in a general mathematical framework. A synaptic evolution scheme of a new kind is proposed in which incoming patterns rather than converging afferents compete. The change in efficacy of a given synapse depends not only on instantaneous pre and postsynaptic activities but also on a slowly varying time-averaged value of the postsynaptic activity. Assuming an appropriate nonlinear form for this dependence, development of selectivity is obtained under quite general conditions on the sensory environment. One does not require nonlinearity of the neuron's integrative power nor does one need to assume any particular form for intracortical circuitry. This is illustrated in simple cases, e.g. when the environment consists of only two different stimuli presented alternately in a random manner. The following formal statement then holds: the state of the system converges with probability 1 to points of maximum selectivity in the state space. We next consider the problem of early development of orientation selectivity and binocular interaction in primary visual cortex. Giving the environment an appropriate form, we obtain orientation tuning curves and ocular dominance comparable to what is observed in normally reared adult cats or monkeys. Simulations with binocular input and various types of normal or altered environments show good agreement with relevant experimental data.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号