首页> 美国政府科技报告 >Effect of Nickel Content on the Crystallization Behavior in Nanocrystalline (CO1-XNIX)88ZR7B4CU1 Soft Magnetic Alloys.
【24h】

Effect of Nickel Content on the Crystallization Behavior in Nanocrystalline (CO1-XNIX)88ZR7B4CU1 Soft Magnetic Alloys.

机译:镍含量对纳米晶(CO1-XNIX)88ZR7B4CU1软磁合金中晶化行为的影响。

获取原文

摘要

A series of (Co1-xNix)88Zr7B4Cu1 soft magnetic alloys, where X was varied from 0 to 1, were fabricated by a melt spinning process into thin ribbons of the material. This process was followed by an isothermal anneal to produce a nanocomposite alloy, i.e. nanocrystalline grains in a residual amorphous matrix. The alloy series was designed to investigate crystallization kinetics and limits to the compositional regime where a nanocomposite could be formed. The primary and secondary crystallization temperatures of each alloy were determined using Differential Scanning Calorimetry (DSC) from which the crystallization activation energies were calculated using the Kissinger Method. When X exceeded 0.75, the as-spun ribbons exhibited partial crystallization, resulting in reduced exothermic crystallization peaks. For lower Ni contents, the ribbons were amorphous in the as-spun state. The activation energy for crystallization decreased with increasing Ni content. Transmission Electron Microscopy (TEM) and Atom Probe Tomography (APT) revealed fine nanocrystallite and boron segregation to the grain boundaries with increasing Ni content. The previously suspected use of Cu clustering, which can act as heterogeneous nucleation sites, showed no clear correlation with observed spatial location of the crystallites. Chemical partitioning between species in the as-spun and primary crystallization heat treatments were correlated to the resulting changes in magnetic properties. As Ni content increased, the saturation magnetization and normalized magnetization for these samples decreased accordingly.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号