首页> 美国政府科技报告 >Structural Evolution and Kinetics in Cu-Zr Metallic Liquids from Molecular Dynamics Simulations (Postprint).
【24h】

Structural Evolution and Kinetics in Cu-Zr Metallic Liquids from Molecular Dynamics Simulations (Postprint).

机译:分子动力学模拟(postprint)中Cu-Zr金属液体的结构演变和动力学。

获取原文

摘要

The atomic structure of the supercooled liquid has often been discussed as a key source of glass formation in metals. The presence of icosahedrally coordinated clusters and their tendency to form networks have been identified as one possible structural trait leading to glass-forming ability in the Cu-Zr binary system. In this paper, we show that this theory is insufficient to explain glass formation at all compositions in that binary system. Instead, we propose that the formation of ideally packed clusters at the expense of atomic arrangements with excess or deficient free volume can explain glass forming by a similar mechanism. We show that this behavior is reflected in the structural relaxation of a metallic glass during constant pressure cooling and the time evolution of structure at a constant volume. We then demonstrate that this theory is sufficient to explain slowed diffusivity in compositions across the range of Cu-Zr metallic glasses.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号