首页> 外文期刊>Sensors and Actuators, A. Physical >Theoretical and experimental investigations of the temperature and thermal deformation of a giant magnetostrictive actuator
【24h】

Theoretical and experimental investigations of the temperature and thermal deformation of a giant magnetostrictive actuator

机译:巨大磁致伸缩致动器的温度和热变形的理论和实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

Giant magnetostrictive actuators (GMAs) have received considerable attention in recent years and are becoming increasingly important in the exploitation of new type electromechanical devices. The performance of giant magnetostrictive actuator (GMA) is generally determined by the precision of the GMA output displacement; however, the heat-induced displacement of a GMA is the principal element influencing the precision of the GMA output displacement. In this paper, a precise GMA with a heat-induced displacement suppression system is developed; the heat-induced displacement control mechanism consists of a temperature control module and a thermal displacement compensation module. Based on the heat-transfer rules, a GMA heat-transfer mathematical model and a GMM rod heat-induced displacement model are bui next, the mathematical models of GMA heat-transfer are solved and the temperature distribution, the heat-induced displacement, and the heat transfer rate of GMA are completely obtained. Finally, a test system for a GMA heat-induced displacement suppression system is implemented, and an experimental study of the system is performed. The results of the GMA heat-induced displacement by experimental research basically coincide with the results of the GMA heat-transfer mathematical model, that is, the GMA temperatures are controlled to below 35 °C and the GMA heat-induced displacement remains within a small range under an input current of 1 A for a period of continuous operation of 80 min. The system observably improved the precision of the GMA output displacement; as a result, the research results provided a basis for a precise micro-displacement GMA.
机译:巨型磁致伸缩致动器(GMA)近年来受到了相当大的关注,并且在开发新型机电设备中变得越来越重要。巨磁致伸缩执行器(GMA)的性能通常取决于GMA输出位移的精度;但是,GMA的热位移是影响GMA输出位移精度的主要因素。本文开发了一种具有热位移抑制系统的精确GMA。热致位移控制机构由温度控制模块和热位移补偿模块组成。根据传热规律,建立了GMA传热数学模型和GMM棒热致位移模型。接着,求解了GMA传热的数学模型,得到了GMA的温度分布,热致位移和传热速率。最后,实现了用于GMA热致位移抑制系统的测试系统,并对该系统进行了实验研究。实验研究得出的GMA热致位移结果与GMA传热数学模型的结果基本吻合,即GMA温度控制在35°C以下,GMA热致位移保持在很小的范围内。在1 A的输入电流和80 min的连续运行时间范围内。该系统显着提高了GMA输出位移的精度;因此,研究结果为精确的微位移GMA提供了基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号