...
首页> 外文期刊>The Journal of Chemical Physics >The effect of protein dielectric coefficient on the ionic selectivity of a calcium channel
【24h】

The effect of protein dielectric coefficient on the ionic selectivity of a calcium channel

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

Calcium-selective ion channels are known to have carboxylate-rich selectivity filters,a common motif that is primarily responsible for their high Ca~(2+)affinity.Different Ca~(2+)affinities ranging from micromolar(the L-type Ca channel)to millimolar(the ryanodine receptor channel)are closely related to the different physiological functions of these channels.To understand the physical mechanism for this range of affinities given similar amino acids in their selectivity filters,we use grand canonical Monte Carlo simulations to assess the binding of monovalent and divalent ions in the selectivity filter of a model Ca channel.We use a reduced model where the electolyte is modeled by hard-sphere ions embedded in a continuum dielectric solvent,while the interior of protein surrounding the channel is allowed to have a dielectric coefficient different from that of the electrolyte.The induced charges that appear on the protein/lumen interface are calculated by the induced charge computation method Boda et al,Phys.Rev.E 69,046702(2004).It is shown that decreasing the dielectric coefficient of the protein attracts more cations into the pore because the protein's carboxyl groups induce negative charges on the dielectric boundary.As the density of the hard-sphere ions increases in the filter,Ca~(2+)is absorbed into the filter with higher probability than Na~+ because Ca~(2+)provides twice the charge to neutralize the negative charge of the pore(both structural carboxylate oxygens and induced charges)than Na~+ while occupying about the same space(the charge/space competition mechanism).As a result,Ca~(2+)affinity is improved an order of magnitude by decreasing the protein dielectric coefficient from 80 to 5.Our results indicate that adjusting the dielectric properties of the protein surrounding the permeation pathway is a possible way for evolution to regulate the Ca~(2+)affinity of the common four-carboxylate motif.

著录项

  • 来源
    《The Journal of Chemical Physics》 |2006年第3期|0349011-11-0|共12页
  • 作者单位

    Department of Molecular Biophysics and Physiology,Rush University Medical Center,Chicago,Illinois 60612 and Department of Physical Chemistry,Pannon University,P.O.Box 158,H-8201,Veszprem,Hungary;

    Department of Physical Chemistry,Pannon University,P.O.Box 158,H-8201,Veszprem,Hungary;

    Department of Molecular Biophysics and Physiology,Rush University Medical Center,Chicago,Illinois 60612;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 英语
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号