...
首页> 外文期刊>Boundary-layer Meteorology >TURBULENCE STRUCTURE OF THE UNSTABLE ATMOSPHERIC SURFACE LAYER AND TRANSITION TO THE OUTER LAYER
【24h】

TURBULENCE STRUCTURE OF THE UNSTABLE ATMOSPHERIC SURFACE LAYER AND TRANSITION TO THE OUTER LAYER

机译:不稳定大气层的湍流结构及向外层的过渡

获取原文
获取原文并翻译 | 示例
           

摘要

We present a new model of the structure of turbulence in the unstable atmospheric surface layer, and of the structural transition between this and the outer layer. The archetypal element of wall-bounded shear turbulence is the Theodorsen ejection amplifier (TEA) structure, in which an initial ejection of air from near the ground into an ideal laminar and logarithmic flow induces vortical motion about a hairpin-shaped core, whish then creates a second ejection that is similar to, but larger than, thefirst. A series of TEA structures form a TEA cascade. In real turbulent flows TEA structures occur in distorted forms as TEA-like (TEAL) structures Distortion terminates many TEAL cascades and only the best-formed TEAL structures initiate new cycles. Inan extended log layer the resulting shear turbulence is a complex, self-organizing, dissipative system exhibiting self-similar behaviour under inner scaling. Spectral results show that this structure is insensitive to instability. This is contrary to thefundamental hypothesis of Monin-Obukhov similarity theory. All TEAL cascades terminate at the top of the surface layer where they encounter, and ate severely distorted by, powerful eddies of similar size from the outer layer. These eddies are products of the breakdown of the large eddies produced by buoyancy in the outer layer When the outer layer is much deeper than the surface layer the interacting eddies are from the inertial subrange of the outer Richardson cascade. The scale height of the surfacelayer, z_s, is then found by matching the powers delivered to the creation of emerging TEAL structures to the power passing down the Richardson cascade in the outer layer It is z_s = u_*~3/kε_s, where u_* is friction velocity, k is the von Karman constant and ε_s is the rate of dissipation of turbulence kinetic energy in the outer layer immediately above the surface layer This height is comparable to the Obukhov length in the fully convective boundary layer. Aircraft and tower observations confirm a strong qualitative change in the structure of the turbulence at about that height. The tallest eddies within the surface layer have height z_s, so z_s is a new basis parameter for similarity models of the surface layer.
机译:我们提出了一种新的模型,用于在不稳定的大气表层中进行湍流的结构,以及在其与外层之间的结构过渡。壁面剪切湍流的原型元素是Theodorsen喷射放大器(TEA)结构,其中,最初从地面附近的空气喷射到理想的层流和对数流会引起围绕发夹形核心的涡旋运动,然后产生第二弹射,类似于但大于第一弹射。一系列TEA结构形成一个TEA级联。在真实的湍流中,TEA结构会以扭曲的形式出现,因为类似TEA(TEAL)的结构会扭曲终止许多TEAL级联,只有形成得最好的TEAL结构才会启动新的循环。在扩展的测井层中,产生的剪切湍流是一个复杂的,自组织的耗散系统,在内部结垢下表现出自相似的行为。光谱结果表明该结构对不稳定性不敏感。这与Monin-Obukhov相似性理论的基本假设相反。所有TEAL级联均终止于它们遇到的表层顶部,并被外层大小相似的强力涡旋严重地扭曲了。这些涡流是外层浮力产生的大涡流分解的产物。当外层比表面层深得多时,相互作用的涡流来自外部理查森级联的惯性子范围。然后通过将传递给新兴TEAL结构创建的功率与沿外层Richardson级联传递的功率相匹配来找到表面层的标度高度z_s,即z_s = u_ *〜3 /kε_s,其中u_ *是摩擦速度,k是冯·卡门常数,ε_s是表层正上方的外层中湍动能的耗散率,该高度与完全对流边界层的Obukhov长度相当。飞机和塔的观测结果证实了大约那个高度的湍流结构发生了强烈的质变。表面层中最高的涡流的高度为z_s,因此z_s是表面层相似性模型的新基础参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号