...
首页> 外文期刊>Economic geology and the bulletin of the Society of Economic Geologists >Fracture Analysis of a Volcanogenic Massive Sulfide-Related Hydrothermal Cracking Zone, Upper Bell River Complex, Matagami, Quebec Application of Permeability Tensor Theory
【24h】

Fracture Analysis of a Volcanogenic Massive Sulfide-Related Hydrothermal Cracking Zone, Upper Bell River Complex, Matagami, Quebec Application of Permeability Tensor Theory

机译:魁北克省马塔加米市上贝尔河综合体,火山成因的与硫化物有关的热液裂化带的断裂分析,渗透率张量理论的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Located in the Matagami mining district of the Abitibi greenstone belt, Quebec, the Bell River Complex is a >5-km-thick tholeiitic layered gabbro and/or anorthosite body (2724.6 +2.5/-1.9 Ma_(U-Pb)), which likely acted as the heat source that drove hydrothermal convection and volcanogenic massive sulfide (VMS) hydrothermal mineralization in the area. Abundant fractures and veins crosscutting the western lobe of the Bell River Complex formed over a range of temperatures from 250 deg to 700 deg C. The 250 deg to 400 deg C assemblage, quartz-epidote + - sericite + - chlorite + - pla-gioclase, is the most widespread and occurs as orthogonal, anastomosing, and random vein sets. Vein densities average between 15 and 25 veins per m~2, locally reaching as high as 40 to 60 veins per m~2. These veins, typically 1 to 3 mm wide, are interpreted to represent thermal cracking associated with hydrothermal fluid mineralization in the district. Furthermore, they crosscut earlier higher temperature pyroxene-plagioclase (>600 deg C) and magnetite-rich (300 deg-600 deg C) veins (1-10 mm wide; densities commonly approx 0-5 veins per m~2). Detailed field measurements of quartz-epidote vein geometries coupled with permeability tensor theory have produced a first-order approximation of the maximum model permeability structure (veins unfilled) of the hydrothermal cracking zone. Representative district-wide values indicate maximum model bulk permeabilities of 10~(-10) to 10~(-8) m~2 for the hydrothermal cracking zone; similar to permeabilities calculated for the fractured sheeted dike complexes of the Semail and Troodos Ophiolites. However, a high-flow zone located within the central parts of the hydrothermal cracking zone is characterized by a maximum model permeability of 10~(-7) m~2. Locally (<1 m~2), the high-flow zone reaches maximum model permeability values as high as 10-(-6) to 10~(-5) m~2 where two or more veins occur with apertures in excess of 2 cm. Mapping has shown that the hydrothermal cracking zone is confined to an approx 350-m-thick interval located within a strongly layered gabbro and/or anorthosite horizon of the Layered zone, upper Bell River Complex. The base of this interval is 1,000 m below the top of the Bell River Complex. Furthermore, in and around the town of Matagami, the dominant orientation of quartz-epidote veins parallels the orientation of the layering (110 deg + - 15 deg). This parallelism is further reflected in the orientation of the calculated quartz-epidote vein permeability tensors (94 deg + - 30 deg, 1 sigma, n velence 71). The parallelism suggests that heterogeneities associated with the layer contacts provided planes of low tensile strength along which the hydrothermal cracks preferentially developed. Such an interpretation further explains why the hydrothermal cracking zone appears to be restricted to the strongly layered zone; there are many more low tensile strength planes. Zones of quartz-epidote veining approximately orthogonal to layering are also present. The orthogonal veins are usually less continuous and commonly truncated (but not crosscut) by layer-parallel veins. The orthogonal subset of veins is interpreted to represent short pathways that allowed fluids to travel between adjacent layer-parallel veins. However, locally, longer layering-orthogonal quartz-epidote veins, showing offsets of 10 to 30 cm normal to the layering of the Bell River Complex, may represent initial conduits that allowed fluids to travel into overlying stratigraphy and through to the paleosea floor. Although volumetrically small in comparison with the permeability structure of the bulk sea floor, the significantly higher permeability of the hydrothermal cracking zone indicates its importance in controlling the flow paths and fluxes of fluids deep within the hydrothermal system.
机译:贝尔河综合体位于魁北克Abitibi绿岩带的Matagami采矿区,是厚度大于5公里的层状辉长岩和/或钙铁矿体(2724.6 + 2.5 / -1.9 Ma_(U-Pb)),可能是推动该地区水热对流和火山成因的大块硫化物(VMS)水热矿化的热源。在250到700℃的温度范围内形成了大量的裂缝和静脉,横切了贝尔河综合体的西部裂片。250到400℃的组合体是石英闪石+-绢云母+-亚氯酸盐+-斜长石胶质岩。 ,是最普遍的,以正交,吻合和随机静脉集出现。静脉密度平均为每m〜2 15至25条静脉,局部最高可达每m〜2 40至60条静脉。这些脉宽通常为1至3毫米,被解释为代表与该地区热液流体矿化有关的热裂。此外,他们横切了较早的高温辉石-斜长石(> 600摄氏度)和富含磁铁矿(300摄氏度-600摄氏度)的脉(1-10毫米宽;密度通常为每m〜2约0-5脉)。石英-埃皮科特静脉几何形状的详细现场测量与渗透率张量理论相结合,已经产生了热液裂化区最大模型渗透率结构(未填充的脉管)的一阶近似值。整个地区的代表性数值表明,热液裂化带的最大模型体渗透率在10〜(-10)到10〜(-8)m〜2之间。与Semail和Troodos Ophiolites的薄片状堤防复合物的渗透率相似。然而,位于热液裂化区中心部分的高流量区的最大模型渗透率为10〜(-7)m〜2。在局部(<1 m〜2),高流量区达到的最大模型渗透率值高达10-(-6)到10〜(-5)m〜2,其中两条或更多条静脉出现且孔径超过2厘米。测绘表明,热液裂化带被限制在大约350米厚的层段内,该层位于上贝尔河综合体层状带的强层状辉长岩和/或正斜岩层中。该区间的底部在贝尔河综合体的顶部下方1,000 m。此外,在Matagami镇及其周围地区,石英假石脉的主要方向与分层的方向(110度+-15度)平行。这种平行性进一步反映在计算出的石英-埃皮科特静脉渗透率张量的方向(94度±30度,1σ,n值71)。平行性表明,与层接触相关的非均质性提供了低拉伸强度的平面,沿着该平面优先产生水热裂缝。这样的解释进一步解释了为什么热液裂化区似乎仅限于强层状区。还有更多的低抗拉强度平面。也存在大致与分层正交的石英埃皮科特脉状区。正交静脉通常不连续,通常被平行层的静脉截断(但不能横切)。静脉的正交子集被解释为表示允许流体在相邻的平行层静脉之间传播的短路径。但是,局部较长的垂直正交的石英埃皮科特脉(与贝尔河综合体的垂向垂直偏移10至30厘米)可能代表了初始导管,该导管允许流体进入上覆地层并进入古陆地层。尽管与散装海床的渗透性结构相比体积较小,但热液裂化区的渗透率明显较高,这表明其在控制热液系统深部流体的流动路径和通量方面很重要。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号