...
首页> 外文期刊>Inventiones Mathematicae >KP solitons and total positivity for the Grassmannian
【24h】

KP solitons and total positivity for the Grassmannian

机译:Grassmannian的KP孤子和总正

获取原文
           

摘要

Soliton solutions of the KP equation have been studied since 1970, when Kadomtsev and Petviashvili proposed a two-dimensional nonlinear dispersive wave equation now known as the KP equation. It is well-known that one can use the Wronskian method to construct a soliton solution to the KP equation from each point of the real Grassmannian Gr(k,n). More recently, several authors (Biondini and Chakravarty, J Math Phys 47:033514, 2006; Biondini and Kodama, J. Phys A Math Gen 36:10519-10536, 2003; Chakravarty and Kodama, J Phys A Math Theor 41:275209, 2008; Chakravarty and Kodama, Stud Appl Math 123:83-151, 2009; Kodama, J Phys A Math Gen 37:11169-11190, 2004) have studied the regular solutions that one obtains in this way: these come from points of the totally non-negative part of the Grassmannian (Gr(k,n))(>= 0). In this paper we exhibit a surprising connection between the theory of total positivity for the Grassmannian, and the structure of regular soliton solutions to the KP equation. By exploiting this connection, we obtain new insights into the structure of KP solitons, as well as new interpretations of the combinatorial objects indexing cells of (Gr(k,n))(>= 0) (Postnikov, http://front.math.ucdavis.edu/math.CO/0609764). In particular, we completely classify the spatial patterns of the soliton solutions coming from (Gr(k,n))(>= 0) when the absolute value of the time parameter is sufficiently large. We demonstrate an intriguing connection between soliton graphs for (Gr(k,n))(>0) and the cluster algebras of Fomin and Zelevinsky (J Am Math Soc 15:497-529, 2002), and we use this connection to solve the inverse problem for generic KP solitons coming from (Gr(k,n))(>0). Finally we construct all the soliton graphs for (Gr(2,n))(>0) using the triangulations of an n-gon.
机译:自1970年开始研究KP方程的孤子解,当时Kadomtsev和Petviashvili提出了一个二维非线性色散波方程,现在称为KP方程。众所周知,可以使用Wronskian方法从真实的Grassmannian Gr(k,n)的每个点构造KP方程的孤子解。最近,一些作者(Biondini和Chakravarty,J Math Phys 47:033514,2006; Biondini和Kodama,J。Phys A Math Gen 36:10519-10536,2003; Chakravarty和Kodama,J Phys A Math Theor 41:275209, 2008; Chakravarty和Kodama,Stud Appl Math 123:83-151,2009; Kodama,J Phys A Math Gen 37:11169-11190,2004)研究了以这种方式获得的正则解:这些均来自于Grassmannian(Gr(k,n))(> = 0)的完全非负部分。在本文中,我们展示了Grassmannian的总正理论与KP方程的规则孤子解的结构之间的令人惊讶的联系。通过利用这种联系,我们获得了对KP孤子结构的新见解,以及对(Gr(k,n))(> = 0)的组合对象索引单元的新解释(Postnikov,http:// front。 math.ucdavis.edu/math.CO/0609764)。特别是,当时间参数的绝对值足够大时,我们将来自(Gr(k,n))(> = 0)的孤子解的空间模式完全分类。我们证明了(Gr(k,n))(> 0)的孤子图与Fomin和Zelevinsky的簇代数之间的有趣联系(J​​ Am Math Soc 15:497-529,2002),我们使用该联系来求解来自(Gr(k,n))(> 0)的通用KP孤立子的反问题。最后,我们使用n边形的三角剖分构造(Gr(2,n))(> 0)的所有孤子图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号