...
首页> 外文期刊>The Journal of Chemical Physics >Direct observation of time-dependent photoluminescence spectral shift in CdS nanoparticles synthesized in polymer solutions
【24h】

Direct observation of time-dependent photoluminescence spectral shift in CdS nanoparticles synthesized in polymer solutions

机译:直接观察聚合物溶液中合成的CdS纳米颗粒的瞬态光致发光光谱位移

获取原文
获取原文并翻译 | 示例
           

摘要

Direct observation of time-resolved emission spectra (TRESs) of cadmium sulfide nanoparticles in polymer solutions was carried out with picosecond resolution using a streak camera. The TRESs were found to undergo a pronounced time-dependent Stokes shift, eventually coinciding with the steady-state photoluminescence spectra within an similar to 40 ns delay time. Moreover, similar to 90 of the shift was complete within the first 1 ns after excitation, in contrast to the fact that overall photoluminescence involves very long time constants of 10-100 ns. The observed Stokes shift dynamics was very similar in CdS nanoparticles stabilized in two very different types of polymer solutions. Thus the solvent and/or polymeric stabilizer appeared to have a minimal effect on the shift. We propose that the relaxation proceeds through an internal mechanism involving the fast decay of high-energy traps into relatively slow-decaying low-energy traps. Time-dependent photoluminescence anisotropy experiments also revealed an similar to 1 ns decay component appearing only in the higher-energy end of the photoluminescence spectrum. Because this time constant is too short to represent rotational diffusion of the nanometer-sized particles, it was associated with the rapid relaxation of the high-energy trap states.
机译:使用条纹相机以皮秒分辨率直接观察聚合物溶液中硫化镉纳米颗粒的时间分辨发射光谱(TRES)。研究发现,TRES经历了明显的瞬态斯托克斯位移,最终在类似于40 ns的延迟时间内与稳态光致发光光谱相吻合。此外,在激发后的前 1 ns 内完成了 90% 的位移,而整体光致发光涉及 10-100 ns 的非常长的时间常数。在两种截然不同的聚合物溶液中稳定的CdS纳米颗粒中,观察到的斯托克斯位移动力学非常相似。因此,溶剂和/或聚合物稳定剂似乎对移位的影响很小。我们提出,弛豫是通过一种内部机制进行的,该机制涉及高能陷阱的快速衰减为相对缓慢衰减的低能量陷阱。瞬态光致发光各向异性实验还揭示了一种类似于 1 ns 的衰变分量,仅出现在光致发光光谱的高能量端。由于这个时间常数太短,无法表示纳米级粒子的旋转扩散,因此它与高能陷阱态的快速弛豫有关。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号