...
首页> 外文期刊>Geophysics: Journal of the Society of Exploration Geophysicists >Impact of rock-physics depth trends and Markov random fields on hierarchical Bayesian lithology/fluid prediction
【24h】

Impact of rock-physics depth trends and Markov random fields on hierarchical Bayesian lithology/fluid prediction

机译:Impact of rock-physics depth trends and Markov random fields on hierarchical Bayesian lithology/fluid prediction

获取原文
获取原文并翻译 | 示例
           

摘要

Early assessments of petroleum reservoirs are usually based on seismic data and observations in a small number of wells. Decision-making concerning the reservoir will be improved if these data can be integrated and converted into a lithology/fluid map of the reservoir. We analyze lithology/fluid prediction in a Bayesian setting, based on prestack seismic data and well observations. The likelihood model contains a convolved linearized Zoeppritz relation and rock-physics models with depth trends caused by compaction and cementation. Well observations are assumed to be exact. The likelihood model contains several global parameters such as depth trend, wavelets, and error parameters; the inference of these is an integral part of the study. The prior model is based on a profile Markov random field parameterized to capture different continuity directions for lithologies and fluids. The posterior model captures prediction and model-parameter uncertainty and is assessed by Markov-chain Monte Carlo simulation-based inference. The inversion model is evaluated on a synthetic and a real data case. It is concluded that geologically plausible lithology/fluid predictions can be made. Rock physics depth trends have influence when cementation is present and/or predictions at depth outside the well range are made. Inclusion of model-parameter uncertainty makes the prediction uncertainties more realistic.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号