...
首页> 外文期刊>journal of chemical physics >Multiphoton dissociation of ethyl chloride at 3.3 mgr;m: Excitation mechanism and rate equations analysis
【24h】

Multiphoton dissociation of ethyl chloride at 3.3 mgr;m: Excitation mechanism and rate equations analysis

机译:Multiphoton dissociation of ethyl chloride at 3.3 mgr;m: Excitation mechanism and rate equations analysis

获取原文
           

摘要

Tunable 3.3 mgr;m laser pulses were used to excite the CH stretching modes of ethyl chloride. Energy deposition vs fluence was measured optoacoustically. For 3.3 mgr;m excitation, absorbed energy increases almost linearly with fluence, while for 10 mgr;m excitation there is substantial saturation. Dissociation yields were measured as a function of fluence and of wavelength by gas chromatographic determination of C2H4from C2H5Cl+nhngr;rarr;C2H4+HCl. Much higher yields were observed for 3.3 mgr;m excitation than for CO2laser 10 mgr;m excitation. Sharp resonances in the 3.3 mgr;m dissociation yield spectrum match peaks in the fundamental and overtone absorption spectra. Overtone spectra show that for many rotational states thevCH=2 level (6000 cmminus;1) is in the quasicontinuum and thatvCH=3 is always in the quasicontinuum. The resonant nature of the excitation allows the rate equations description for transitions in the quasicontinuum and continuum to be extended to the discrete levels. Absorption cross sections are estimated from ordinary IR spectra. A set of cross sections which is constant or slowly decreasing with increasing vibrational excitation gives good fits to both absorption and dissociation yield data. The much smaller dissociation yields and the saturated absorption at 10 mgr;m reflect bottlenecking in the discrete levels. As ethyl chloride pressure is increased from 0.2 to 2 Torr the fraction dissociated decreases by nearly a factor of 2. Only about 10percnt; further decrease occurs from 2 to 6 Torr. The rate equations model gives a similar curve when the strong collision assumption is made for vibrational relaxation and RRKM dissociation rates are used.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号